J/ψ PRODUCTION AT HADRON COLLIDERS

Hee Sok Chung Argonne National Laboratory

Geoffrey T. Bodwin, **HSC**, U-Rae Kim, Jungil Lee, **PRL**113, 022001 (2014) Geoffrey T. Bodwin, **HSC**, U-Rae Kim, Jungil Lee, Yan-Qing Ma, Kuang-Ta Chao, arXiv:1509.07904 (to appear in PRD)

Young Scientists Symposium at ANL Feb 16, 2016

OUTLINE

- Leading-power fragmentation in quarkonium production
- Cross section and polarization of J/ψ
- Summary

HEAVY QUARKONIUM

- A heavy quarknium is a bound state of a heavy quark and a heavy antiquark.
- J/ψ is a charmonium with $J^{PC}=1^{--}$, provides clean signal through decay into lepton pair
- Typical energy scales : $m>mv>mv^2\approx \Lambda_{\rm QCD}$ $v^2\approx 0.3$ for charmonia, $v^2\approx 0.1$ for bottomonia
- Nonrelativistic description is possible:
 use a nonrelativistic effective theory of QCD

- Inclusive quarkonium production cross section at large p_T provides tests of QCD through
 - perturbative calculation of hard processes involving quarks and gluons
 - evolution of hadronic matrix elements such as PDFs and fragmentation functions
- Furthermore, long-distance nature of quarkonia can be investigated using NRQCD

NRQCD factorization conjecture

$$d\sigma_{A+B o H+X} = \sum_{n} d\sigma_{A+B o Qar{Q}(n)+X} \langle \mathcal{O}^H(n)
angle$$
 Bodwin, Braaten, and Lepage, PRD51, 1125 (1995)

- Short-distance cross sections contain physics above the scale of the heavy-quark mass m, perturbatively calculable
- Nonperturbative long-distance matrix elements contain physics below m, scale with powers of v
- Sum is organized in powers of v

NRQCD factorization conjecture

$$d\sigma_{A+B o H+X} = \sum_{n} d\sigma_{A+B o Qar{Q}(n)+X} \langle \mathcal{O}^H(n)
angle$$
 Bodwin, Braaten, and Lepage, PRD51, 1125 (1995)

- At LO in v, the car c are produced with same color and angular momentum as the J/ψ : color-singlet channel
- At higher orders in v, the $c\bar{c}$ in color-octet states can evolve into a J/ψ through soft gluon emission

Hee Sok Chung

NRQCD factorization conjecture

$$d\sigma_{A+B o H+X} = \sum_{n} d\sigma_{A+B o Qar{Q}(n)+X} \langle \mathcal{O}^H(n)
angle$$
 Bodwin, Braaten, and Lepage, PRD51, 1125 (1995)

- Usually truncated at relative order v^4 : $^1S_0^{[8]}$, $^3S_1^{[8]}$, $^3P_J^{[8]}$, $^3S_1^{[1]}$ channels for J/ψ
- Color-singlet LDMEs can be determined from lattice NRQCD, potential models, or from decay rates
- Not known how to calculate color-octet LDMEs, usually extracted from fits to measurements at large p_T

J/ψ POLARIZATION PUZZLE

• Polarization of J/ψ was suggested as a test of the color-octet mechanism

$$oldsymbol{\lambda}_{oldsymbol{ heta}} = \left\{ egin{array}{ll} +1 & : & Transverse \\ 0 & : & Unpolarized \\ -1 & : & Longitudinal \end{array}
ight.$$

- NRQCD at LO in α_s predicts transverse polarization at large p_T
- Disagrees with measurement
- NLO corrections are large in the $^1S_0^{[8]}$ and $^3P_J^{[8]}$ channels
- NRQCD at NLO still predicts transverse polarization

J/ψ production at hadron colliders

CDF, PRL99, 132001 (2007) Braaten, Kniehl, and Lee, PRD62, 094005 (2000)

CMS, PLB727, 381 (2013)
Butenschoen and Kniehl, PRL108, 172002 (2012)

- Shape of the p_T -differential cross section is important for extraction of color-octet LDMEs.
- Short-distance cross sections depend on scales of both m and p_{T}
- Corrections of higher orders in $\, lpha_s \,$ can be enhanced by powers of p_T/m
- Large NLO corrections arise because new channels that fall off more slowly with p_T open up at NLO

- The leading power (LP) in p_T $(1/p_T^4)$ is given by single-parton fragmentation Collins and Soper, NPB194, 445 (1982) Nayak, Qiu, and Sterman, PRD72, 114012 (2005)
- Corrections to LP fragmentation go as m_c^2/p_T^2
- ${}^3S_1^{[8]}$ channel is already at LP at LO: NLO correction is small
- contribution until NLO: NLO corrections are large

- LP fragmentation contribution is given by convolution of the 1-parton cross section and the fragmentation function for the parton to evolve into a $c\bar{c}$
- LP fragmentation reproduces the fixed-order calculation at NLO accuracy at large p_T

- Corrections beyond NLO accuracy can be obtained by including perturbative corrections to the parton cross sections and the fragmentation functions.
- Leading logarithms of all orders in α_s can be included by evolving the fragmentation functions.
- These additional contributions can be combined with the fixed-order calculation as

 $\frac{d\sigma^{\mathrm{LP+NLO}}}{dp_{T}} = \underbrace{\frac{d\sigma^{\mathrm{LP}}}{dp_{T}} - \frac{d\sigma^{\mathrm{LP}}_{\mathrm{NLO}}}{dp_{T}} + \frac{d\sigma_{\mathrm{NLO}}}{dp_{T}}}_{\text{fixed-order}}$

12

contributions

calculation to NLO

LP+NLO

 The additional fragmentation contributions have important effects on the shapes in CO channels

J/ψ PRODUCTION

• We obtain good fits to data for $p_T>10~{
m GeV}$ $(pprox 3 imes m_{J/\psi})$

CDF, PRD71, 032001 (2005) CMS, JHEP02, 011 (2012) CMS, PRL114, 191802 (2015)

Cross section is dominated by the $^1S_0^{[8]}$ channel

J/ψ POLARIZATION

- PROMPT J/ψ HAS **SMALL** POLARIZATION
- This is in reasonably good agreement with CMS data

CDF, PRL85, 2886 (2000), PRL99, 132001 (2007) CMS, PLB727, 381 (2013)

SUMMARY

- We present new LP fragmentation contributions that have a significant effect on calculations of J/ψ production in hadron colliders
- When we include LP fragmentation contributions, we predict the J/ψ to have near-zero polarization at high PT at hadron colliders
- This is the first prediction of small J/ψ **polarization** at high p_T in NRQCD
- Work on higher-order corrections is in progress

SUPPLEMENTARY

$\psi(2S)$ PRODUCTION

 $\psi(2S)$ LDMEs from fit to CMS and CDF cross section data for

$$p_T > 11 \mathrm{GeV}$$

$$(pprox 3 imes m_{\psi(2S)})$$

CDF, PRD80, 031103 (2009) CMS, JHEP02, 011 (2012) CMS, PRL114, 191802 (2015)

Young Scientists Symposium

 $p_T \text{ (GeV)}$

$\psi(2S)$ POLARIZATION

- Slightly transverse at the Tevatron and the LHC
- Agrees with CMS data within errors

XcJ PRODUCTION

- ${}^{3}S_{1}^{[8]}$ and ${}^{3}P_{J}^{[1]}$ channels contribute at leading order in v
- We obtain good fits to ATLAS data ATLAS, JHEP1407, 154 (2014)
- The ${}^3P_J^{[1]}$ matrix element obtained from fit agrees with the potential model calculation

Potential model

$$|R'(0)|^2 = 0.075 \, {\rm GeV}^5$$
 Eichten and Quigg, PRD 52, 1726 (1995)

Our fit

$$|R'(0)|^2 = 0.055 \pm 0.025 \text{ GeV}^5$$

→ Suggests that NRQCD factorization works

XcJ POLARIZATION

- Polarization of J/ψ from $\chi_{cJ} \to J/\psi + \gamma$
- No measurement available

