Particle Physics and Fermilab

Young-Kee Kim Deputy Director, Fermilab The University of Chicago

Aspen Winter Conference February 16, 2012, Aspen, Colorado

21st Century Questions in Particle Physics

Evolved Thinker

- Origin of mass for elementary particles?
- Where did all antimatter go?
- What do neutrinos tell us?
- Do charged leptons oscillate?
- Why three families of quarks and leptons?
- Do all forces become one?
- Extra dimensions?
- Will protons ever decay?
- Supersymmetry or other new symmetries?
- What is dark matter?
- What is dark energy?

How do we make progress?

Go to:

Highest energies Shortest distances Earliest moments of the Universe

Reveal laws of nature: ~complete and ~elegant

Answer the questions and understand our origin

Tools for the Future

Energy Frontier

Intensity Frontier

Discover the nature of massive known & NEW particles indirectly by intense beams of charged leptons and quarks

Intensity Frontier

Probe even more massive NEW particles by intense neutrino beams

Experimental reach (model dependent)

Cosmic Frontier at Fermilab

Dark Matter Detector

Dark Energy Camera

Detectors in underground facilities

Cosmic Frontier at Fermilab

Exploring Highest Cosmic Ray Particles (Auger)

Exploring Quantum Space-time (Fermilab Holometer)

Energy Frontier at Fermilab

Origin of Mass: Higgs Boson

Excluded by direct searches at 95%CL

Higgs \rightarrow 2 photos at LHC Higgs \rightarrow 2 bottom quarks at Tevatron Stay tuned this year!

Intensity Frontier at Fermilab

SCRF Test Facility

neutrino beams

> muon beams

Main Injector Recycler Neutron cancer center

proton beam

testbeam

evation

Muon Test Facility

Exploring unknown unknowns in neutrino oscillation

Intensity Frontier at Fermilab: Neutrinos

Intensity Frontier at Fermilab (muon program: this decade)

SCRF Test Facility

beams

muon beams

Main Injector Recycler Neutron cancer center

proton beam

testbeam

Pration

Muon Test Facility

Intensity Frontier at Fermilab: Muon Campus (this decade)

Intensity Frontier at Fermilab: muon g-2

Intensity Frontier at Fermilab: $\mu \rightarrow e$ conversion

• Negligible rate in the SM: $< 10^{-54}$

Measurable rate with new physics contributions: ~ 10⁻¹⁵

Intensity Frontier at Fermilab: $\mu \rightarrow e$ conversion

Conversion of a muon into an electron in the field of a nucleus:

Mu2e experimental rate sensitivity: $10^{-16} - 10^{-17}$ Mu2e has discovery sensitivity to many new physics models

Intensity Frontier at Fermilab Kaon beam (if an opportunity arises)

Project X

will be the world's most powerful (> 5 MW) and flexible (162 MHz) proton source

will make the world's most powerful beams of neutrinos, muons, kaons and nuclei

to explore new physics in unprecedented breadth and depth

will establish a versatile technical foundation for future accelerators

Project X: Low-energy Program

Highest-intensity proton accelerator in the world

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$ Experiment

<) (X

Electric Dipole Moment Search

Nuclear Energy Station Concept

Stations Materials - temperature control ADS - lead or lead-bismuth loop HTGR - graphite, He loop SFR - sodium fast reactor loop LWR - Zr, water loop MSR - molten salt loop Fusion - lithium loop Other - Cold neutron - liquid He

Spallation Target

Project X: High-energy Program

More beam for high-intensity neutrino experiments

The Project X and the big questions

Muon Beamline & Neutrino Factory

Highest-intensity muon and neutrino source in the world

Project X and Lepton Collider Development Facilities at Fermilab

Accelerator System Test / Research Facility

Illinois Accelerator Research Center

Construction of IARC (2011 – 2013) Groundbreaking on Dec. 16, 2011 **CDF** Assembly / Collision Hall New building

Accelerator: science, technology, education, partnerships with industry

Project X and Accelerator Driven Subcritical Reactor Nuclear waste transmutation / Energy sources

Fermilab Program

Cosmic

Dark Matter, Dark Energy, Ultra High Energy Cosmic Particles

Accelerator/Detector/Computing Technology Development

Vision of Fermilab

- Fermilab is going after the most exciting questions in particle physics, questions about the nature and future of our universe.
- Fermilab continues to operate most of its existing accelerators with enhanced capabilities and next generation experiments (2010s)
- Fermilab will build new accelerators and experiments for the future (2020s and beyond)