Argonne
 NATIONAL
 LABORATORY

... for a brighter future

U.S. Department of Energy

UChicago • Argonne ${ }_{\text {uс }}$

Magnetic Field Calculation of a Helical Undulator : Analytical and OPERA Model with "Tolerance" Parameter

S.H. Kim

Advanced Photon Source
May 5-6, 2009
Third Special Workshop on Magnet Simulations for Particle Accelerators in PAC09

On-Axis Field for Helical Undulators

(Helical) Solenoid W.R. Smythe (1939)

$$
B_{t r}=\frac{\mu_{0} I}{\lambda}\left\{k r_{0} K_{0}\left(k r_{0}\right)+K_{1}\left(k r_{0}\right)\right\}
$$

$(k=2 \pi / \lambda)$
K_{n} : modified Bessel functions

Static and Dynamic Electricity (McGraw-Hill, 1939), p. 272
Helical Undulator B.M. Kincaid (1977)

$$
B_{0}=2 B_{t r} \quad \text { J. Appl. Phys. 48, } 2684 \text { (1977) }
$$

Helical Undulator with coil dimensions (a, b)

$$
\begin{aligned}
& \mathbf{B}(k z-\phi)=B_{0}\{\hat{r} \cos (k z-\phi)+\hat{\phi} \sin (k z-\phi)\} \\
& \mathbf{B}(x, y)=B_{0}\{\hat{x} \cos (k z)+\hat{y} \sin (k z)\}
\end{aligned}
$$

$$
B_{0}=\frac{2 \mu_{0} j \lambda}{\pi} \sin \left(k \frac{a}{2}\right) \int_{r_{0}}^{r_{0}+b}\left\{k r K_{0}(k r)+K_{1}(k r)\right\} \frac{d r}{\lambda} \quad\left(E q . B_{0}\right)
$$

Compare (Eq. \boldsymbol{B}_{0}) with OPERA model calculations

OPERA Model Calculations: cm, A/cm², CGS units, Tolerance = 1

OPERA Model Calculations Depend on Tolerance Parameters

less than 0.8%
less than 0.1\%

Axial coil thickness, $a=3.5 \mathrm{~mm}$ $B_{E q}=0.561188 \mathrm{~T}$

OPERA Model Calculations: $\mathbf{c m}$, A/cm², CGS units, Tolerance $=10^{-5}$

Undulator period $=12.0 \mathrm{~mm}$
Coil ID, 2 ro $=6.3 \mathrm{~mm}$
Radial coil thickness, $b=3.84 \mathrm{~mm}$

Summary

■ Calculated on-axis fields of a helical undulator using the OPERA model of helical coils

■ OPERA model agreed with a derived analytical formula within ($\mathrm{B}_{\mathrm{OP}}-\mathrm{B}_{\mathrm{Eq}}$)/ $\mathrm{B}_{\mathrm{Eq}}<10^{-3}$ by using different units and the OPERA conductor Tolerance parameters

■ Other methods available for easily modeling helical coils?

