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m‘ 2D Coil Cross-section

Analytical Coil dimensions: Width of coil, number of layers, type of
approach geometry
2D coil cross-section without iron or with infinite permeability ]
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ROXIE* 2D ‘ ‘H i HD2 cross-section
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In-h -Modeling of the cable o
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- keystone angle
- insulation thickness
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LARP HQ cross-section

*Routine for the Optimization of magnet X-sections, Inverse field
calculation and coil End design

3rd Special Worshop on Magnet Simulation

05/05/2009 for Particle Accelerator



e |-’ﬁ‘ 2D Modeling

BERKELEY LaB

e I
- 2D magnetic analysis (ROXIE, Opera)
-Iterations
- Coil cross-section: mechanical
magnetic coupling

- ANSYS 2D magnetic analysis
= Lorentz forces

-ANSYS 2D Mechanical analysis - iron saturation
= Frictionless
= Friction
o 4
Al collars Iron pads

Iron yoke

Al shell
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BERKELEY LAB

.-..‘ 3D coil-end desigh and end parts design

-Input: 2D cross-section —
- Design of the pole piece

- Design of the metallic end-parts

CAD
Rapid Prototyping parts
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Cos30
design
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[Opera 3D]

Block design
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Pole and End parts fabrication
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% 3D Coil Modeling: Cos n® magnets

BERKELEY LaB

| BEND |

Turn by turn coil model

Turn by turn coil model
Block model

Refined coil model

Block coil model

CAD VF Opera 3D ANSYS 3D

End parts and island
fabrication

End optimization and peak
field management (length

of yoke) ‘
eamssee————————) 3D Mechanical Analysis
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BERKELEY LaB

3D Mechanical Analysis, a tool...

7

\

To design

N\

J

4 N\
To understand magnet
performances...

J

Case of a quadrupole with bronze pole
For fabrication reasons => gaps in pole
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Layer l urn 1 g (pStrain)
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TQS01/b - Axial strain pole turn, p=0.6 all, Bronze Island
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| Calculated b o ﬂsizmbly 1
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" | bronze pole S TOLA
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- g% Spikes in coil axial strain )
B (cool-down & excitation) i
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After cool-down, pole and coil in tension
—> Gap opening
= High tension in the coil

= correlation with quench location during
magnet test
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3D Mechanical Analysis, a tool...
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To understand magnet
performances...
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Case of a quadrupole with bronze pole
For fabrication reasons => gaps in pole
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After cool-down, pole and coil in tension
—> Gap opening
= High tension in the coil

= correlation with quench location during
magnet test
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3D Mechanical Analysis, a tool...
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Case of a quadrupole with bronze pole
For fabrication reasons => gaps in pole
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3D Mechanical Analysis, a tool...
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Case of a quadrupole with bronze pole
For fabrication reasons => gaps in pole
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3D Mechanical Analysis, a tool...
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Case of a quadrupole with bronze pole
For fabrication reasons => gaps in pole
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—> Gap opening
= High tension in the coil
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3D Mechanical Analysis, a tool...
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Case of a quadrupole with bronze pole
For fabrication reasons => gaps in pole
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3D Mechanical Analysis, a tool...
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Case of a quadrupole with bronze pole
For fabrication reasons => gaps in pole
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Situation in the end .

With friction
Pole displacement

-1. 42 -1.26 -1.1 i -.94 -.78
-1.34 -1.18 -1.0Z -. 86 =R

Cool-down
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Situation in the end .

With friction
Pole displacement

-1. 42 -1.26 -1.1 i -.94 -.78
-1.34 -1.18 -1.0Z -. 86 =R

11000 A
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Situation in the end .

With friction
Pole displacement

-1. 42 -1.26 -1.1 i -.94 -.78
-1.34 -1.18 -1.0Z -. 86 =R
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Situation in the end
AN

With friction
Pole displacement

-1. 42 -1.26 -1.1 i -.94 -.78
-1.34 -1.18 -1.0Z -. 86 =R
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Situation in the end .

With friction
Pole displacement

-1. 42 -1.26 -1.1 i -.94 -.78
-1.34 -1.18 -1.0Z -. 86 =R

14000 A

3rd Special Worshop on Magnet Simulation

05/05/2009 for Particle Accelerator



. . o
Situation in the end

With friction
Pole displacement

10 e

TQS01/b - Axial strain pole turn, p=0.6 all, Bronze Island
T T L L
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-1. 42 -1.26 -1.1 i -.94 -.78
-1.34 -1.18 -1.0Z -. 86 =R
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BERKELEY LaB

... and improve
magnet design / coil

fabrication TQS02 - Axial strain pole turn, p=0.6, Ti Island
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; Choice of the axial loading

Aluminum tie rods

Endplate
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No friction, low axial loading

Turn-by-turn coil
modeling

003679
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No friction, low axial loading
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Turn-by-turn coil
modeling

L0le031 L 032062 L 0480982 L 064123
.024048a .040077 .058108 .072139
293 K, Bladder pressurization
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No friction, low axial loading

Turn-by-turn coil
modeling
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| No friction, low axial loading

Turn-by-turn coil
modeling

-1.196 -.930196 —.664426
-1.063 -.797311 -.53154
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| No friction, low axial loading

Turn-by-turn coil
modeling

11000 &
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| No friction, low axial loading

Turn-by-turn coil
modeling

-1.226
-1.089
12000 A
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No friction, low axial loading

Turn-by-turn coil
modeling
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| No friction, low axial loading

Turn-by-turn coil
modeling

-1.258

14000 A&
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| No friction, low axial loading

Turn-by-turn coil
modeling

-1.264 - .906642

-1.085
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No friction, full axial support

~- 045407 006744
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No friction, full axial support

—-. 104562
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No friction, full axial support

Sl
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No friction, full axial support
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No friction, full axial support

11000 A
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No friction, full axial support

-1.74¢%

12000 A
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No friction, full axial support
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No friction, full axial support

-1.685

) —.374405
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No friction, full axial support

-1.644 T
-1.096

15000 A
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Measurements:
e All quenches in the innermost turn
e Trend from end to central segments

Finite element model:
e Gaps in the ends
e Sliding in the straight section

9 kA

9000 A

o . Paay

10500 A

05/05/2009
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ceeeed) \ Example of Ratcheting

Measurements of rods response
during excitation

Ratcheting of rod strain and
coil length during excitation

Variation of rod strain and coil
length during excitation

C—

A rod strain (ustrain)

40 9
7T 0.0025
#+ 0.011 g .
- 0.009 7 e + 0.0020
- 0008 E £ % g
= e -+ 0.0015
- 0.006 @ = -
o © -
= 7 4 .
- 0.005 & g + 0.0010
< = 3
< .
- 0.003 &
5 g
- + 0.0005
- 0.002
1 4 -
0.000 0 T "I T T T T T — 0.0000
00 01 02 03 04 05 06 07 08 00 01 02 03 04 05 06 07 08

(N5 (N,5)°
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Contact element The model simulates a non-conservative system:

=> Energy is dissipated by sliding friction

E dissipation from 0 to 3kA (J/m2)

HR00OEO0EN

Results of the analysis :
Path dependent
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N . Ratcheting: Modeling

BERKELEY LaB

The model simulates a non-conservative system: E dissipation from 3 to 4kA
=> Energy is dissipated by sliding friction (J/m2)
ANSYS 10.0
FLCT NO

Results of the analysis :
Path dependent
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N . Ratcheting: Modeling

BERKELEY LaB

The model simulates a non-conservative system: E dissipation from 4 to 5kA
=> Energy is dissipated by sliding friction (J/m2)
ANSYS 10.0
PLCT NO

Results of the analysis :
Path dependent

HR00OEO0EN
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N . Ratcheting: Modeling

BERKELEY LaB

The model simulates a non-conservative system: E dissipation from 5 to 6kA
=> Energy is dissipated by sliding friction (J/m2)
ANSYS 10.0
FLCT NO

Results of the analysis :
Path dependent
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N . Ratcheting: Modeling

BERKELEY LaB

The model simulates a non-conservative system: E dissipation from 0 to 6 kA
=> Energy is dissipated by sliding friction (J/m2)
ANSYS 10.0
FLCT NO

Results of the analysis :
Path dependent
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N . Ratcheting: Modeling

BERKELEY LaB

The model simulates a non-conservative system: E dissipation from 6 to 6.5kA

=> Energy is dissipated by sliding friction (J/m2)

Results of the analysis :
Path dependent
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N . Ratcheting: Modeling

BERKELEY LaB

The model simulates a non-conservative system: E dissipation from O to 6.5kA
=> Energy is dissipated by sliding friction (J/m2)
ANSYS 10.0
PLCT NO

Results of the analysis :
Path dependent
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N . Ratcheting: Modeling

BERKELEY LaB

The model simulates a non-conservative system: E dissipation from 6.5 to 7kA
=> Energy is dissipated by sliding friction (J/m2)
ANSYS 10.0
FLCT NO

Results of the analysis :
Path dependent
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N . Ratcheting: Modeling

BERKELEY LaB

The model simulates a non-conservative system: E dissipation from 0 to 7kA
=> Energy is dissipated by sliding friction (J/m2)
ANSYS 10.0
FLCT NO

Results of the analysis :
Path dependent
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N . Ratcheting: Modeling

BERKELEY LaB

The model simulates a non-conservative system: E dissipation from 7 to 7.5kA
=> Energy is dissipated by sliding friction (J/m2)
ANSYS 10.0
FLCT NO

Results of the analysis :
Path dependent
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N . Ratcheting: Modeling

BERKELEY LaB

The model simulates a non-conservative system: E dissipation from 0 to 7.5kA
=> Energy is dissipated by sliding friction (J/m2)
ANSYS 10.0
FLCT NO

Results of the analysis :
Path dependent

HR00OEO0EN

70

—— Sep. mu=0.50 ratch

60 -

Microstrain
&~
[=)
.

o
o
L

Z);{

[
o

-
o
PP

7500 A

0 T T T T T T T T
000 010 020 030 040 050 0860 070 080

(N5

3rd Special Worshop on Magnet Simulation

05/05/2009 for Particle Accelerator



N . Ratcheting: Modeling

BERKELEY LaB

The model simulates a non-conservative system: E dissipation from 7 to 8kA
=> Energy is dissipated by sliding friction (J/m2)
ANSYS 10.0
FLCT NO

Results of the analysis :
Path dependent
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N . Ratcheting: Modeling

BERKELEY LaB

The model simulates a non-conservative system: E dissipation from 0 to 8kA
=> Energy is dissipated by sliding friction (J/m2)
ANSYS 10.0
FLCT NO

Results of the analysis :
Path dependent
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N . Ratcheting: Modeling

BERKELEY LaB

The model simulates a non-conservative system: E dissipation from 8 to 8.5kA
=> Energy is dissipated by sliding friction (J/m2)
ANSYS 10.0
PLCT NO

Results of the analysis :
Path dependent
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N . Ratcheting: Modeling

BERKELEY LaB

The model simulates a non-conservative system: E dissipation from O to 8.5kA
=> Energy is dissipated by sliding friction (J/m2)
ANSYS 10.0
PLCT NO

Results of the analysis :
Path dependent
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N . Ratcheting: Modeling

BERKELEY LaB

The model simulates a non-conservative system: E dissipation from 8.5 to 9kA

=> Energy is dissipated by sliding friction (J/m2)

Results of the analysis :
Path dependent
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BERKELEY LaB

When 2D does not work...

[ Example of the ECR J

Combination of
- 1 sextupole (cos30)
- 3 solenoids

Modeled in VF Opera 3D
- constant perimeter with

9
e the sextupole
8 BN ayer_iron
/,f >}§ ------ 4-layer_no-iro

7 /// LY = - 4-layer_iron

6| \ -Sextupole => 30 degrees model
— </
E |F \ .
&5 F £EFEI
o ! \ PN
T |4 27 N .
] Y - Sextupole + Solenoid => 60 degrees

%, Z R .

| % 7 ; model because of the z field

2 \‘\\ ........ ;;;;

1 Y

0

-400 -300 -200 -100 0 100 200 300 400

Axial location z (mm)
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ECR Mechanical Analysis

Venus, mechanical model

Venus, mechanical model
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ECR Mechanical Analysis (Il)

Sextupole force (per block)

=> No force from solenoid (B,)
Solenoid force

=> No force from sextupole

=> Magnetic pressure

T Wi

il f’j f i'

il
/111

Sextupole e.m. forces and sclenoid magnetic press

Sextupole force (per block)

=> Effect of the radial field of the
solenoid on the sextupole

Sextupole e.m. forces and solenoid e.m. forces
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