ILC Damping Ring Wiggler Prototype comparison of FEA predictions with Magnetic Measurements

Steve Gottschalk STI Optronics Inc Supported by DOE Contract DE-FG02-04ER84081 and STI Optronics IRAD

Main goals

- Reduce DRW cost
- Design the DRW to produce small dynamic multipoles
 - Caused by wiggle amplitude, K/($k_w^*\gamma$)=0.934*B(T)* λ^2_w (cm)/($2\pi^*\gamma$)
 - Quadratic rolloff causes quadrupole
 - Fourth order rolloff causes octupole
 - Sixth order rolloff causes duodecapole
 - They are energy dependent. Tuning after assembly is energy independent.
 - Best is to tune random errors, not add band aids when poor design causes dynamic multipoles
- Apply methods to other ID's

Summary

- Damping rings are used to reduce beam emittance by synchrotron radiation cooling. The damping time depends on the B² integral. Damping ring wigglers (DRW) are used to do this.
- For one iteration of the ILC DRW the period was quite large, about 400mm.
- The radiation being emitted in the ring is **100's of kW**. Standard SR have parasitic radiation, but not here. Superconducting wigglers will quench quite easily. EM wigglers will require huge amounts of power. PM wigglers are one solution. However, the amount of magnet required for the wigglers is an issue. Standard wigglers use wide poles. For small period devices that is acceptable, but the cost is prohibitive for large periods. In addition, if the poles are wide, the magnetic force grows. For a 10 period wiggler, wide poles have **100,000 lbs** force while narrow poles reduce this to **50,000 lbs**, which is "typical" of wigglers already made.
- The narrow pole, optimized DRW has a cost that is about 60% of the cost of a wide pole DRW.
- The risk is that the field quality will be insufficient.
- This SBIR showed that with careful analysis, design, manufacturing and QA that the present state-of-the-art is able to achieve the required quality.

FEA Requirements

- Must be parametric
 - Geometry
 - Material
- Automation
- Global optimizer
 - Tightly integrated with parametric and automation
- Well tested and robust

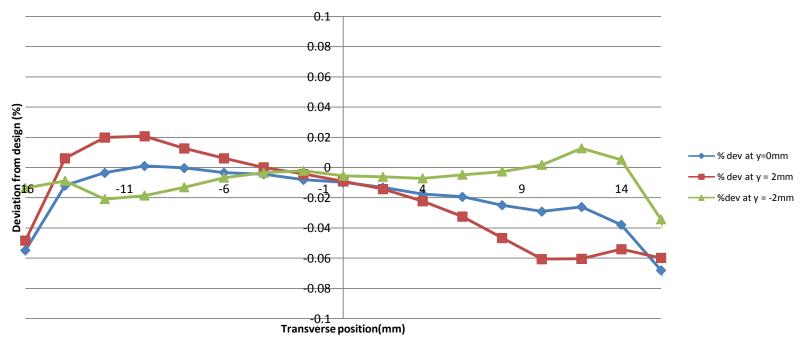
Outline

- Specifications and summary of comparisons with FEA
- FEA based cost saving estimates
- FEA results
- Measurements and data analysis
- Conclusion

SPECIFICATIONS AND SUMMARY OF COMPARISONS WITH FEA

ILC-DRW Specifications

Property	SBIR Value	Comments			
Period	400mm	ILC-DW specification. Largest			
		period ever made.			
Peak field	1.8Tesla	ILC-DW specification. Causes			
		substantial pole saturation			
Gap	20mm	ILC-DW Specification			
Axial field shape	Square wave to maximize	Minimize damping time. The			
	integral of B ²	thick poles achieve B ²			
		integrals = $0.67 \text{*}B^2 \text{*}(\lambda_w/2)$.			
Half-period integral	250,000 G-cm	Result of maximizing B ²			
		integral. Standard wiggler			
		integral < 90,000 G-cm,			
		undulators < 10,000 G-cm			
Beam energy	1 GeV	ILC-DW Specification			
Wiggle amplitude	5mm peak-to-peak	Wigglers < 0.3mm,			
		undulators much less			
Pole axial length	120mm	Maximized B ² integral			
ILC DRW Prototype comparison of FEA with					


ILC DRW Prototype comparison of FEA with

measurements

STI Optronics Inc

Comparisons with FEA show Pole Shaping Achieved Goals

50mm wide, shaped poles

field P-to-P	Int P-to-P	Int RMS
.07%	0.09%	0.0218%
.035%	0.07%	0.0193%
•	07%	07% 0.09%

ILC DRW Prototype comparison of FEA with

measurements

STI Optronics Inc

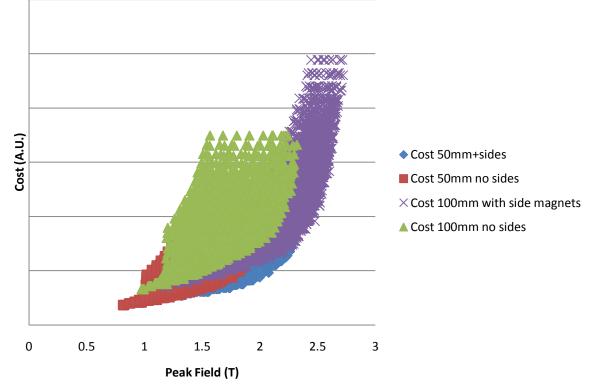
FEA BASED COST SAVING ESTIMATES

3D parametric code used to calculate B for many magnet and pole sizes

ap(cm)	0			
ap(cm)	2	Bun # Period (cm) Pole Vol	lume (cm3),Magnet Volume ((🔺	
eriod(cm)	40		4,12.00,5.00,10.00,10.00,6.00,8	
	1		3.12.00.5.00.10.00.10.20.5.88.8	
ole Width	5		2,12.00,5.00,10.00,10.40,5.77,8	
olo illiadi	10		3,12.00,5.00,10.00,10.60,5.66,8	
iitial Pole	10		5,12.00,5.00,10.00,10.80,5.56,8	
leight (cm)	1		5,12.00,5.00,10.00,11.00,5.45,8 5,12.00,5.00,10.00,11.20,5.36,8	
2 ()	20		5,12.00,5.00,10.00,11.40,5.26,8	
inal Pole	100		4.12.00.5.00.10.00.11.60.5.17.8	
			23,12.00,5.00,10.00,11.80,5.08,	
lumber of Pole	11		18,12.00,5.00,10.00,12.00,5.00,	
oughte			59,12.00,5.00,10.00,10.00,8.00,	
iitial Magnet	1.2		73,12.00,5.00,10.00,10.60,7.55, +	
rae / Dala Arae			•	
inal Magnet	6	Solve.		
roe / Dolo Aroe	1	Medelsugnersame	ieigiit as	
lumber of Area	13	megnoto		
etion	1.0	Magnet 0.1		
iitial Side		Recess (cm)	Pause processing	
lagnet/Main	0	Side Magnet 1.6		
agnet ∨oume		Initial Pole 0.6	Use adaption	
inal Side Magnet	0	1010	Newton 0.5	
Main magnet	lo.	Final Pole 0.6	Air gap poly	
umber of side	1	Number of 1	All gap poly 12	
amoticizos	11		Run	
umber of Main	11	Pole fraction 0.6		
agnot Sizon	I	Main Magnet 1584	Status	
otal Number of	1573	Volume(cm^3)	Solving	
Indole	1.010	Side Magnet 0		
nalysis output file	ILC_DW_50r		215	
rofiv	1120_044_001			
iitial Run number	1	Number	1358	

- STI custom VB code (2000)
 - Automates MagNET objects
 - Create models, meshes, solves, postprocesses
 - Object oriented, easy to understand
 - Output is CSV file with details
 - Easy to change outputs to reflect other figures of merit as the application requires

- Fixed gap and period
- Varied topology
 - Allowed designs with and without side magnets
- Varied geometry
 - Poles, main magnets, side magnets, transverse, vertical overhangs
- Recorded all parameters, on-axis peak field, By(x,0,z).
- Solved approximately 10,000 models

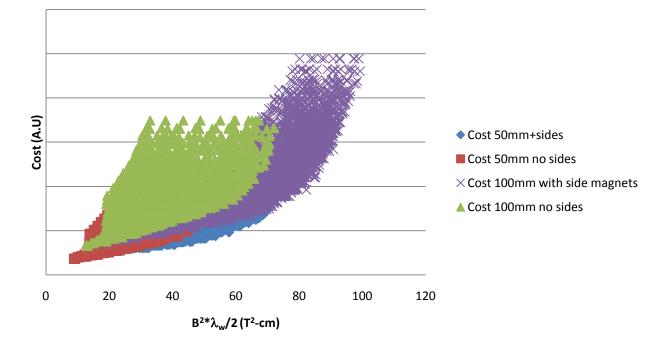

ILC DRW Prototype comparison of FEA with

measurements

STI Optronics Inc

Costs (A.U) for different configurations

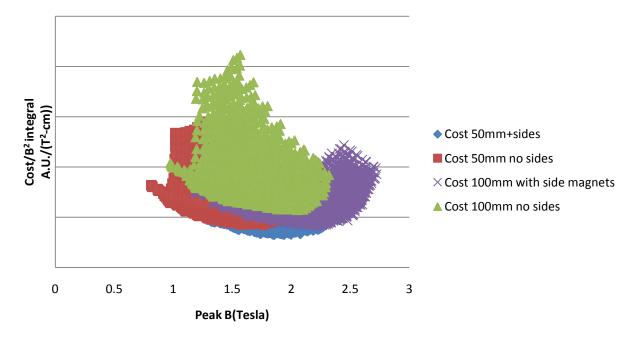
Cost comparisons for different configurations



- Highly non-linear cost vs. field strength
 - Poles are heavily saturated. Small dB requires lots of dV.
 - Typical of all large period wigglers
 - Common for 1% dB /B to require 30% dV/V

ILC DRW Prototype comparison of FEA with measurements

Costs (A.U.) vs. $B^{2*}\lambda_w/2$


$B^{2(\lambda_w/2)}$ Cost comparisons for different configurations

Alternative is improvement in damping time, e.g.
 B² integral

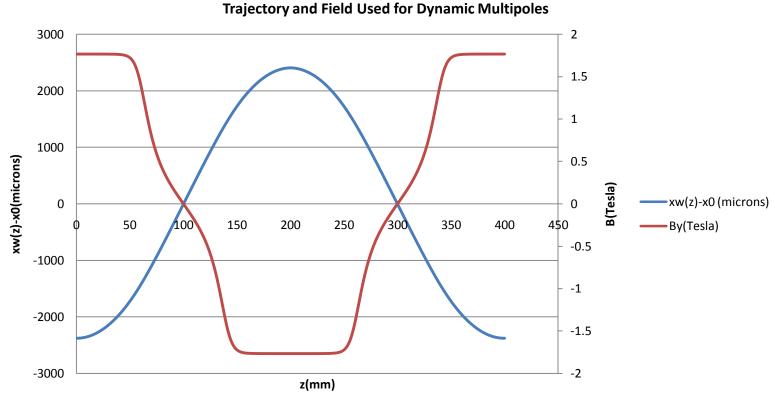
System cost trades

Cost per unit B² integral comparisons for different configurations

 Useful to optimize system cost, e.g. Cost/B² integral. Implies overall length can be adjusted

Summary of optimum configurations based on FEA

Figure of merit	Value	Minimum cost configuration
Peak field	< 1.5 Tesla	50mm wide poles no side magnets
Peak field	1.5 – 2.3 Tesla	50mm wide poles with side magnets
Peak field	2.3 – 2.6 Tesla	100mm wide poles with side magnets
Peak field	>2.6 Tesla	Not analyzed, no conclusions
B ² integral	< 25 T ² -cm	50mm wide poles no side magnets
B ² integral	25 – 70 T ² -cm	50mm wide poles with side magnets
B ² integral	70 – 120 T ² -cm	100mm wide poles with side magnets
B ² integral	>120 T ² -cm	Not analyzed, no conclusions


FEA RESULTS

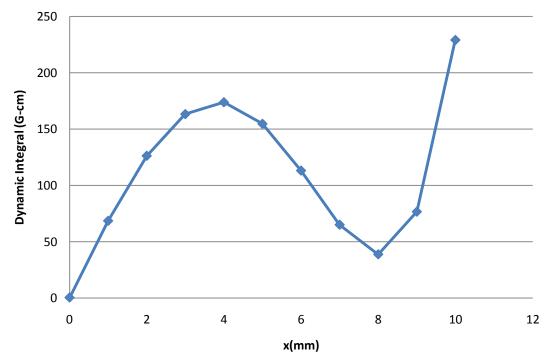
Several approaches used

- Quarter period model
 - 2D pole axial width, axial chamfers on magnets, poles
 - 3D to get magnet and pole heights
 - 3D for pole shaping
 - See 2005 workshop for details
- Full model
 - Magnet homogeneity sorting
 - BH curve sensitivity
 - Geometry sensitivity
 - Used to compare FEA with measurements
- Codes are general and have been used to optimize other figures-of-merit

QUARTER PERIOD FEA

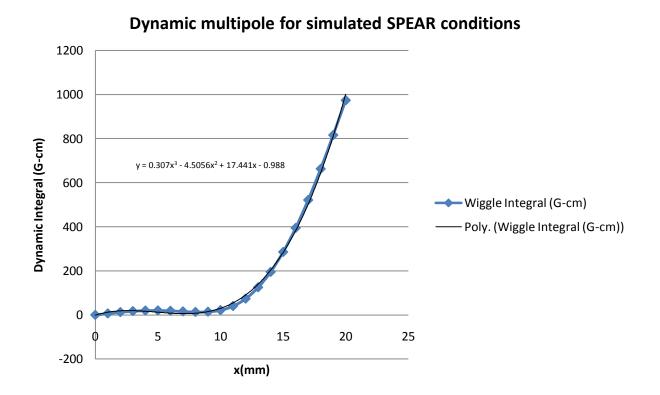
2D FEA to get pole axial shape

- Maximize B² integral to minimize damping time
- Result is very long pole
 - Standard insertion device has poles 40-25% of $\lambda_w/2$, magnets 60%-75% of $\lambda_w/2$
 - DRW has poles that are 60% of $\lambda_w/2$, magnets are 40% of $\lambda_w/2$


ILC DRW Prototype comparison of FEA with

measurements

STI Optronics Inc

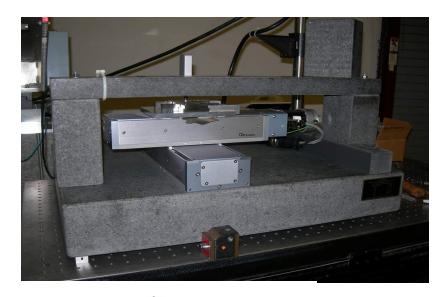

Optimization produced 13X lower dyanamic multipoles

Dynamic line integrals for 50mm wide poles

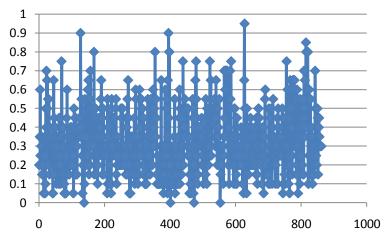
- Flat pole has 3200 G-cm dynamic multipole
- Used OptiNET (Infolytica) global optimizer, parametric geometry, special dynamic multipole postprocessing code to minimize peak-to-peak dynamic multipole variation.
- See presentation at 2005 workshop for process.

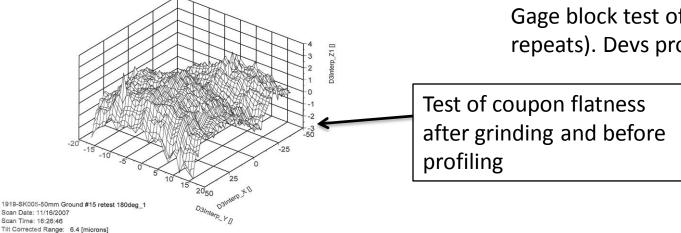
SPEAR BL11 dynamic multipole reduction

- BL11 dynamic octupole was 0.38 kG/cm2
- This design produces 0.0307 kG/cm2 for same wiggle amplitude (0.310mm)


Pole shapes studied

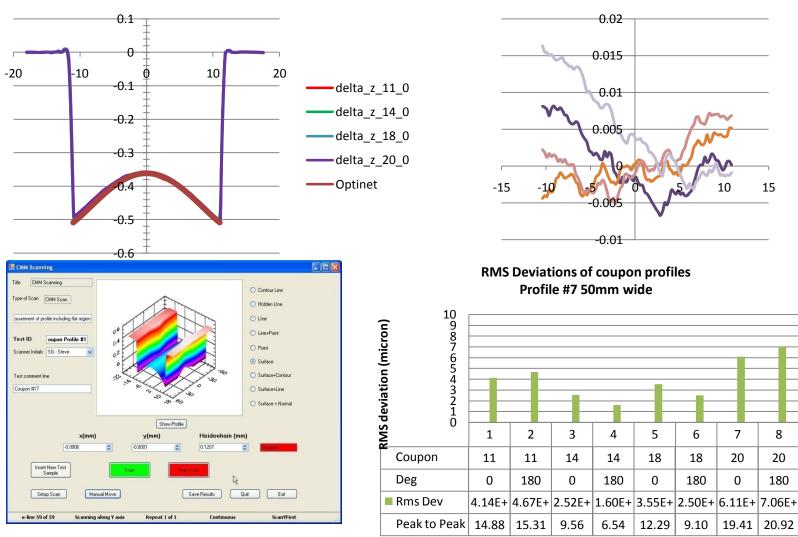
- Poles and magnets
 - Flat
 - Stepped with flat bottom
 - Stepped with curved bottom
 - Curved edge stepped with flat bottom
 - Curved edge with curved bottom
 - Pocket in pole with the above 5 choices. Pocket axial extent varied
- All shapes are feasible and can be manufactured using 3-4 processes.
- All were evaluated with OptiNET and custom pre and post processing codes


Optimum pole/magnet configurations


- 50mm wide poles
 - Stepped with curved bottom
 - Curved edge with curved bottom. Slightly better, higher risk, not used on prototype
- 60mm wide poles
 - Curved edge stepped with flat bottom
- 70mm wide poles
 - Stepped with flat bottom
- 100mm wide poles
 - Flat

Pole pseudo-CMM machine

Peak-to-peak H



Gage block test of CMM (3X repeats). Devs probably dust

ILC DRW Prototype comparison of FEA with measurements

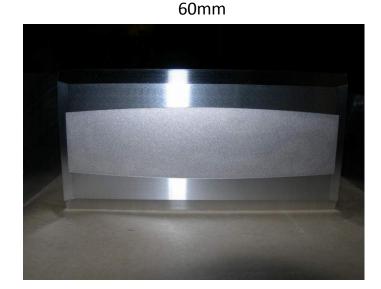
STI Optronics Inc

Pole coupon results

ILC DRW Prototype comparison of FEA with

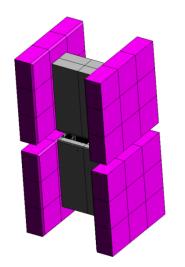
measurements

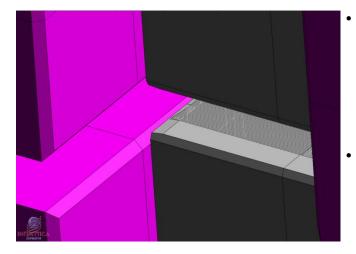
STI Optronics Inc


Pole pictures

50mm

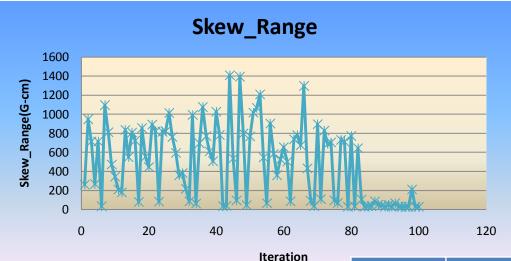
70mm

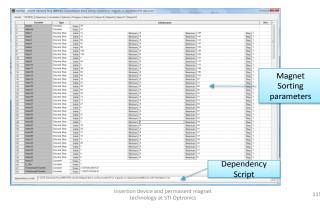




- All have different optimum step widths and depth
- All have different optimum transverse chamfer

FULL FEA OF PROTOTYPE


Full FEA model

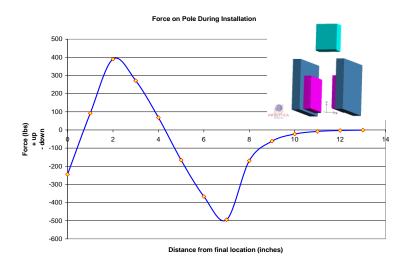

- FEA implied that a full-sized prototype was needed
 - Approximate profile sensitivity using FEA is 5-10 Gcm/micron for dynamic multipoles
 - Actual profile accuracy using small STI pseudo-CMM is about 5 micron RMS, 10 micron P-to-P
 - Rough estimate is then 25-50 G-cm RMS, 100 G-cm Pto-P
 - Ideal peak-to-peak dynamic multipoles are 250 G-cm
 - "Rule-of-fives" in QA is that you need 5X better quality measurements than are specified
 - Only a *full sized* prototype could ever meet this requirement.
 - Budget constraints implied only one prototype could be built with capability to handle many configurations.
 - Full optimization would require different magnet shapes for each pole width.
 - 3X more expense for magnets
 - Different mechanical assembly for each pole width
 - Different assembly tooling for each pole width
 - Did not add side magnets
 - Code can handle them, but budget could not
 - Higher risk since shaped poles hadn't been proven
 - Prototype does allow adding side magnets in the future

FEA based magnet sorting

- Main result is the magnets must be sorted on a brickby-brick basis
- See 2007 workshop presentation for details

OptiNet Sorting Parameters

Objective	Function	x range	Ideal value	Final value (G- cm)
1	Dynamic multipole	25 mm	Finite	259
2	Even skew	20 mm	Zero	11
3	Odd skew	20 mm	Zero	7
4	Skew range	20 mm	Zero	30
5	Normal range	20 mm	Finite	145
6	Odd normal	20 mm	Zero	4


ILC DRW Prototype comparison of FEA with

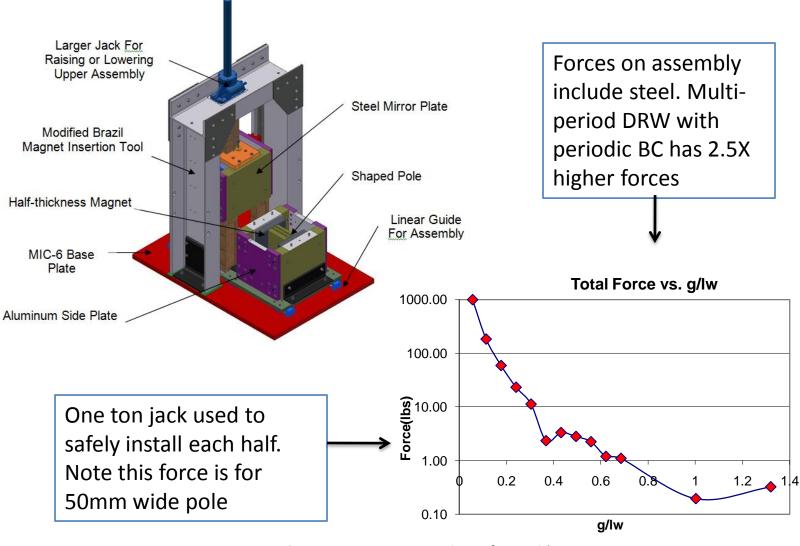
measurements

STI Optronics Inc

FEA TO ASSIST ASSEMBLY PROCESS

FEA Force calculation

Extremely important that force reverses at 0.75" otherwise pole is a deadly projectile


- MagNet uses optimized Maxwell Stress
- Requires air space around object
 - We parametrically vary the air gaps and extrapolate to zero gap to insure maximum accuracy
- Tested on earlier devices and predicted behavior is correct
- Must be used on ILC-DRW due to large, dangerous forces
- Used to carefully script entire assembly process

Pole installation pictures

measurements STI Optronics Inc

Force during full assembly

ILC DRW Prototype comparison of FEA with

measurements

STI Optronics Inc

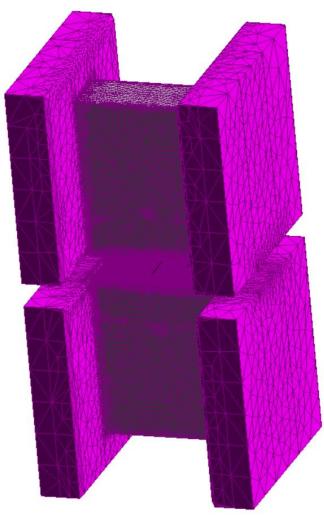
Full assembly pictures

MEASUREMENTS AND DATA ANALYSIS

Prototype scanning

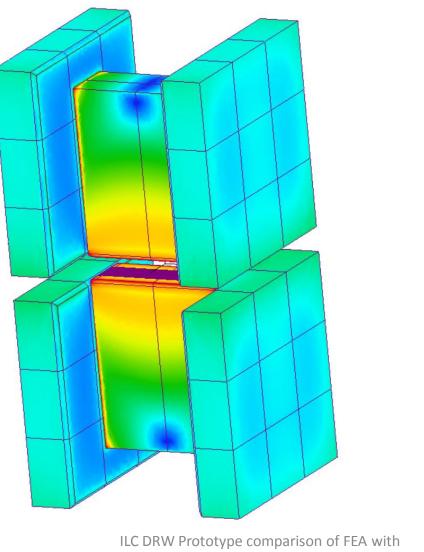
Scanning SW

🖷 Hall Probe Scanner version 1.1										
Title Ha	all Probe Scanner version 1.7			Scan D	ata			Phase	error	
Type of Scan	Hall Probe	10-					10-		-10	-
Test ID	z shift	1								
Comments	6	8_					<u> </u>	S	-8	
dx = 0.504	📴 Hall Probe Scan 🛾	able				-	_ 🗆 🛛			
	Acq Acq Axis Directio	n (mm)			mber of peats	This form shows the curr allows the user to change	ent scan table and e the entries.		-6 8	1
	z Positive	-30	-2 0	1		The preferred way to cre				Ì
	z Positive	-30	-1 0	1		use the "Create/Build Ne This brings up a scan arr	ew Scan Table" button.		-4 -	;
Scanner Initial	2 T USRIVE		0 0	1		of the common scan prot	tocols are predefined			
Min z(mm)	z Positive	-30	1 0	1		inside the scan builder. H the user to build a scan t			-2	
	z Positive	-30	2 0 -2 0	1		If desired, a new scan ta	hle can be built by			
Max z(mm)	z Positive	-29	·2 U	1		either editing an existing adding/deleting individua	table or manually	2 3 4		
Number of Point		97.97	0 0	1		not the preferred approact	ch because the	z (n	m) ZoomX, ZoomY, Z	~
Sample Spacing		-29	1 0	1		resulting table may produ analysis software cannot		Source	Phase(deg) Mean Std	٦
	z Positive	-29	2 0	1	in the second					
Pause time (sec:	L TOORTO	-28	-2 0	1	Set up the scan					×
Total Acq Time		-28	·1 0	1	Type of Scar	n to Perform	Acquisition	Scan Direction	Acquisition Axis	
	z Positive z Positive	-28 -28	0 0	1			O Both	Positive O Negative		
	z Positive	-28	2 0	1	 Centerline 	Grid	J O boar e			
1 5 10		Create/Build New		Total	🔿 🗙 Transver	se 🔘 Y Transverse	The scanner is at	e to send external clocks to the		
			Scan rable	rotar			However, there m	it is moving in either direction. ay be mechanical factors that	I Z Axis	
	30 😂						favor one scan di	rection.	Rotation Axis	
	Stage UUT	8					Probe Orie	ntations		
x (mm)	-70.000 0.000						O Both	Positive 🚫 Negative	z-axis is default. Other axes may be useful	
InputGridSca						? 🛛			for dipoles or special magnets.	
							This option is mai	nly used to determine x, y, z t are applied when there are	Quick Scan O Full Scan	-
XG	àrid	١	r Grid		Thet	a Grid	probe director and	tale applied when there are		
Initial x (mm)	-30.0	1817.3	-2.0	\$.) 0.0	Scan Offse	ts	Standard choice. A quick scan does one repe	at at
(initial a (initi)	-30.0	Initial y (mm)	-2.0	*	Initial Angle (degs	s) [0.0	x offset(mm)	0.0	each position while the full scan uses three	-
delta x (mm)	1.0	delta y (mm)	1.0	\$	Angle Step (degs	0.0 😂	y offset(mm)	0.0	Number of Repeats	
					5 5		z offset(mm)	0.0		_
NX	61	NY	5	\$	Number of Angle:	s 1 🗘	Angle offset(dr	egs) 0.0	1	
Last x (mm)	30	Last y (mm)	2						Control allows adjustments for full scans. Quick	are
		Edst y (min)	2		Final Angle (degs	.) [0	origin. This is diffe	v a deliberate shifting of the scan erent from the internally stored	forced to have one repeat	
							ofsets that are ap	plied when a probe flip is used.		
						DK Cancel		cans measure on the surface of a le, the x transverse scan with the		
Owners -	monteue co	and the second se			analusis software it	t should be possible to	z axis acquisiton i	s measuring B on the x-z plane at be able to shift the y-origin of the	t l	
Manual D-	amping Ring				scan in both forwa	rd and backward		et can be used to do this.		
		4			set the "reference"					
WinZip	Windows	-			represents the e-be	eam path.			OK Cance	
Photogra		neer, Foto N	atura			and the second	and the second second	Natu	onal Geographic, October 20	18
Thorogra	pin by juin ven	1001,10001	and the second					1 11411	and any inpute, October 20	and the second

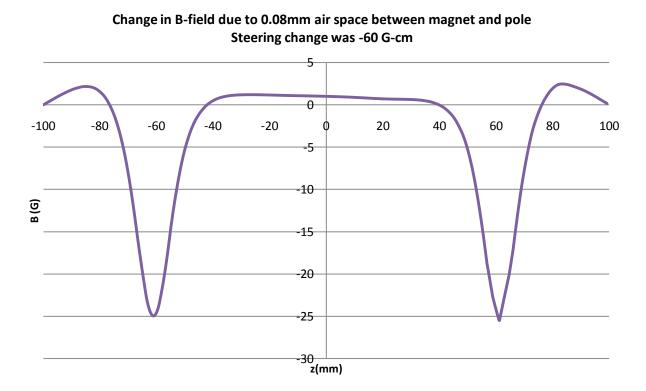

ILC DRW Prototype comparison of FEA with

measurements STI Optronics Inc

Still not finished with FEA!


- Needed even higher accuracy
- Account for finite air space (70 microns) between magnet and poles
 - Magnets had coating so physical space was smaller
 - Used FEA to determine effect
- Adjusted magnetic gap in FEA to match actual, built gap. Things deflect.
- Did not incorporate measured pole shapes

Refined 3D FEA details

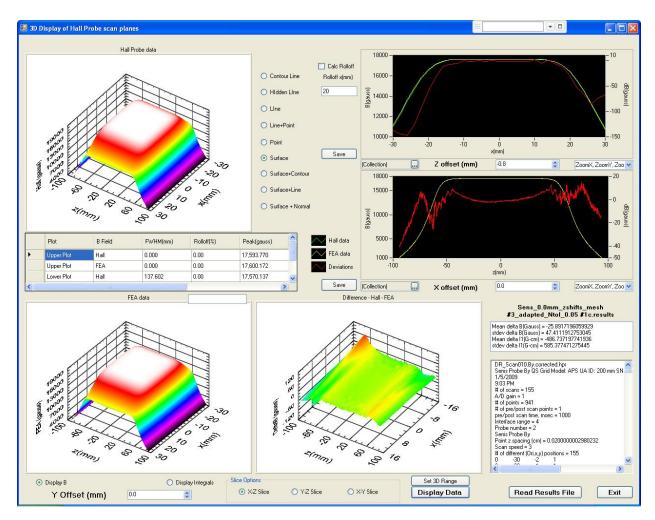

- Newton convergence 0.05%
 - Successive approximation gave same answers, took 5-10X longer
- Air regions used 3rd order elements
- Rest used 2nd order elements
- Dynamic multipoles can change by 120 G-cm (0.05%) for different *measured* BH curves
- Final, adapted mesh (h-method)
 - Tetrahedra 6,330,036
 - Field nodes 9,079,376
 - Solution time 40 hrs (3 adaptions) on Dell Precision 490, dual XEON 5160, 3GHz, 4 GB RAM, Vista 64 OS
- BH curve extrapolated from measured 79 kA/m to 300 kA/m

Field shows significant pole saturation

|B| smoothed 1 3 2,91429 2.82857 2.74286 2.65714 2.57143 2.48571 2.4 2.31429 2.22857 2.14286 2.05714 1.97143 1.88571 1.8 1,71429 1.62857 1.54286 1.45714 1.37143 1.28571 1.2 1.11429 1.02857 0.942857 0.857143 0.771429 0.685714 0.6 0.514286 0.428571 0.342857 0.257143 0.171429 0.0857143

FEA Sensitivity to pole-magnet air space

• Physical pole axial length was slightly smaller. Deviations between measurements and FEA indicated needed to include this in analysis


Data analysis

Parameter	Value	Units
Air space	0.0700950924341504	mm
Taper	1.927874735840963E-02	%
Cant	5.199473664717784E-02	mrad
X shift	-0.2766589729255725	mm
Y shift	0.2433049726089509	mm
Z shift	-0.2549652902216381	mm
Alpha	0.3868679428146524	deg
Beta	0.1006526101511226	deg
Gamma	-0.6652153429615457	deg

- Wrote special Fortran95 post processing code to compare FEA with measurements
- Varied above parameters to minimize deviation
 - Rigid body transformation of coordinates between FEA and scanner
 - Taper and cant as well
 - Used 3D tensor spline interpolation of FEA data, no interpolation of measurements
- Found at least four local minima so should use global optimizer

ILC DRW Prototype comparison of FEA with

Comparison of FEA to measurements

CONCLUSION

Shaped poles work

- Shaped poles can significantly reduce costs of large period wigglers
- Agreement between measurements and state-of-the-art FEA at the 0.02 0.07% level
- Absolutely must include magnet inhomogeneity
- Better results are possible
 - Measure BH curves to larger H values
 - Better pole fabrication
- Adding side magnets and re-optimizing pole shape will further improve dynamic multipoles
- Good agreement in 3D implies FEA can be used to generate symplectic coefficients
- But Still will need to tune the wiggler
 - Every ID ever built has needed some sort of tuning
 - On 60+ ID's STI built, the best initial kick error was 0.18%. This is 450 G-cm *per pole*
 - Random accumulation would be unacceptably large producing significant trajectory, multipole, phase and other errors
 - Must tune