Archimedes, Higgs, and Falling Honey

J. D. Jackson
CQS, December 14, 2009

Chris Quigg, Theoretical Physicist Extraordinaire

Un Boulevardier de Paris
et

Un Pèlerin De Santiago de Compostela

TWO REGGEON EXCHANGE CONTRIBUTIONS TO

HADRON SCATTERING AMPLITUDES AT

HIGH ENERGY

Chris Quigg

Lawrence Radiation Laboratory
University of California
Berkeley, California 94720

September 14, 1970

ABSTRACT

Regge cuts are discussed from a phenomenological point of view. Some attempts to derive amplitudes with Regge cuts are reviewed, including those of Amati, Stanghellini, and Fubini, and of Gribov. A phenomenological amplitude for the Regge cut from two Reggeon exchange is written down in a form that manifestly satisfies s-u crossing. The amplitude is formulated in terms of s-channel helicity partial-wave amplitudes, so the Reggeization of s-channel helicity amplitudes is discussed as a technical simplification. Implications of Regge cuts for various duality-breaking schemes (and vice versa) are summarized. Brief remarks are made on two Reggeon cuts and exotic exchange. These include model calculations of the $\left(P^{\prime}+\rho\right) \otimes\left(P^{\prime}+\rho\right)$ cut in πr scattering, and of the single-meson-exchange "forbidden" reaction $K^{-} p \rightarrow K^{+} \Xi^{-}$.

Undated Rap Sheet

CHRIS QUIGG APPOINTED THEORY DEPARTMENT HEAD

Chris Quigg was appointed head of the Fermilab Theoretical Physics Department last week.

Blah, Blah, Blah

Quigg and his wife, Elizabeth, a member of the Computing Department, live in Wheaton. They have 2 children, David four and Katherine- one.

Actually July 1977

Archimedes and Higgs

Floating prisms and broken symmetry

Canadian conifer log booms

Brazilian log "boom" (wood is too heavy to be floated and towed economically; some don't even float)

Proposition 2.

The surface of any fluid at rest is the surface of a sphere whose centre is the same as that of the earth.

Propoaition 3.

Of solids those which, size for size, are of equal weight with a fluid will, if let down into the fluid, be immersed so that they do not project above the surface but do not sink lower.

Propoaltion 4.

A solid lighter than a fluid will, if immersed in it, not be completely submerged, but part of it will project above the surface.

Propontilion 5.

Any solid lighter than a fluid will, if placed in the fluid, be so far immersed that the weight of the solid will be equal to the weight of the fluid displaced.

Archimedes on a Floating Paraboloid of Revolution

Proposition 8.

Given a solid in the form of a right segment of a paraboloid of revolution whose axis $A M$ is greater than $\frac{3}{4} p$, but such that $A M: \frac{1}{2} p<15: 4$, and whose specific gravity bears to that of a fluid a ratio less than $\left(A M-\frac{3}{4} p\right)^{2}: A M^{2}$, then, if the solid be placed in the fluid so that its base does not touch the fluid and its axis is inclined at an angle to the vertical, the solid will not return to the position in which its axis is vertical and will not remain in any position eacept that in which its aaxis makes with the surface of the fluid a certain angle to be desoribed.

Geometry of floating wooden prisms of square cross section

$$
\begin{aligned}
& \mathrm{U}(\mathrm{z}, \theta)=\mathrm{g} \rho \mathrm{Vz}-\mathrm{g} \rho^{\prime} \mathrm{V}^{\prime} \mathrm{z}^{\prime} \\
& \mathrm{r}=\rho / \rho^{\prime}
\end{aligned}
$$

Huygens (1650) - prism of square cross section

Pippard (present day) - Cambridge Examination
My Stimulus- Erdíos, Schliber \& Herdon, AJP 60, 335, 345 (1992)

Demonstration of
 Assorted Square Wooden Prisms

With questions and audience response

Here are some glimpses from the demonstration in 1999

Unwrapping and displaying the wooden square prisms

Displaying a teak prism (density, 0.63), getting an audience vote, and floating the prism - the 45° voters won!

Displaying red oak (density, 0.75)

Red oak floats at neither 0° nor 45°, but some intermediate angle - Broken Symmetry!

Equilibrium height and angle of attitiude of floating square prisms of wood versus specific gravity

There is much more to consider about these prisms

Small Oscillations about Equilibrium

> Lagrangian: $$
L=\frac{1}{2} \rho_{0} r \dot{z}^{2}+\frac{1}{12} \rho_{0} r \dot{\theta}^{2}-U(z, \theta)
$$ $\frac{U(z, \theta)}{g \rho_{0}} \approx C+\frac{1}{2} u\left(z-z_{0}\right)^{2}+v\left(z-z_{0}\right)\left(\theta-\theta_{0}\right)+\frac{1}{2} w\left(\theta-\theta_{0}\right)^{2}$

Table of coefficients:

Region number	Range of r	u	v	w
1	$0<\mathrm{r}<$ 0.211325	1	0	$[1-6 \mathrm{r}(1-\mathrm{r})] / 12$
2	$1 / 4<\mathrm{r}<9 / 32$	$2 \sqrt{9 / 16-\mathrm{r}}$	$(1 / \sqrt{2}) \sqrt{9 / 32-\mathrm{r}}$	$\frac{4(9 / 32-\mathrm{r})(3 / 4-\mathrm{r})}{3 \sqrt{9 / 16-\mathrm{r}}}$
3	$9 / 32<\mathrm{r}<1 / 2$	$2 \sqrt{\mathrm{r}}$	$\sqrt{2}$	0
4	$\sqrt{12 \mathrm{r}(1 / 2-\mathrm{r}) \sqrt{6 \mathrm{r}(1-\mathrm{r})-1}}$	$\frac{6 \mathrm{r}(1-\mathrm{r})-1}{3 \sqrt{12 \mathrm{r}(1-\mathrm{r})-1}}$		
2		$\frac{4}{3} \mathrm{r}(\sqrt{\mathrm{r}-\sqrt{9 / 32})}$		

But no time!

On to Falling Honey !

1. Demonstrations
2. Dimensional Analysis

A very small glimpse of falling honey from 1999

-

Mahadevan, Ru \& Samuel, Nature 392, 140 (12 March 1998)

Likely variables
rate of flow $\mathrm{Q}\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$
viscosity $\mathbf{U}\left(\mathrm{m}^{2} \mathrm{~s}^{-1}\right)$
filament radius r (m)
frequency of laying down
the coils $\Omega\left(\mathrm{s}^{-1}\right)$
And
coil radius R (m)
speed of filament falling

$\mathrm{v}\left(\mathrm{ms}^{-1}\right)$
$\left\{\right.$ But $v=\Omega R$ and $v=Q / \pi r^{2}$
so R and v can be eliminated
in favor of Q, r, and Ω.\}
Perhaps density? Ignore for present.

The authors seek $\quad \Omega=\mathrm{F}(\mathbf{U}, \mathrm{Q}, \mathrm{r})$

But \mathbf{U}, Q, and r involve only length and time.
Dimensional analysis gives only two equations
for three unknown exponents - No unique answer!
Noting that $\mathrm{Q} / \mathbf{U r}$ is dimensionless, we can at best write

$$
\Omega=\mathrm{Q} / \mathrm{r}^{3} \mathrm{G}(\mathrm{Q} / \mathbf{U r})
$$

Where $\mathrm{G}(\mathrm{x})$ is an (as yet) unknown function.

We need physical input.

The authors argue that the torque from differential viscous force across the curving strand balances the torque from the centrifugal force.

This balancing of torques leads them directly to the relation,

$$
\Omega=\mathrm{Q}^{4 / 3} \mathrm{r}^{-10 / 3} \mathbf{u}^{-1 / 3}
$$

[equivalent to $\mathrm{G}(\mathrm{x}) \propto \mathrm{x}^{1 / 3}$ from the previous slide]

Actually, the authors had in their original paper the formula, $\Omega=\mathrm{Q}^{3 / 2} \mathrm{r}^{-7 / 2} \mathbf{U}^{-1 / 2}$, equivalent to G $G(x) \propto x^{1 / 2}$. They showed the following plot:

Log-log plot of $\Omega / \mathrm{Q}^{3 / 2}$ vs r

Data follow a power law,,$\Omega / \mathrm{Q}^{3 / 2} \propto \mathrm{r}^{-3.58 \pm 0.16}$ In the Feb 3/ 2000 revision, they state that if the data are reanalyzed, a plot of $\Omega / Q^{4 / 3}$ gives

$$
\Omega / \mathrm{Q}^{4 / 3} \propto \mathrm{r}^{-3.45 \pm 0.10}
$$

The exponent -3.45 is in poorer agreement with the expected $-10 / 3$ than was the original -3.58 with the expected $7 / 2$. Perhaps they were right the first time.

Honey
 Does
 Fall
 In
 Spiral Coils!

Happy Birthday, Chris and Many Happy Returns !

Alles Gute zum Geburtstag! Joyeux anniversaire! Buon compleanno! Feliz compleaños! Zorionak zuri !

And
Merry Christmas !

Do you recognize him now?

In case you get bored in some of the talks, here is a problem in dimensional analysis, simpler than falling honey.

Figure 10.8 The first atomic explosion, the "Trinity Test," on July 16, 1945, at Jornada del Mucrto, near Alamogordo, New Mcxico. A forticth of a second has passed since the starc of the explosion. (Los Alamos Scientific Laboratory.)

In July 1945 the first prototype nuclear weapon was exploded in New Mexico. Here is a photo from the files, copied from a book by Emilio Segrè.
We are given the scale on the photo and its time after detonation. The shock front is sharply marked.

Question: What is the energy E of the explosion?
We know the radius at time $t=25 \mathrm{~ms}$.
We want an equation for the fireball radius $\mathrm{R}(1)$ in terms of E and other variables.

