

Pierre FAYET

CHRIS QUIGG Symposium, Fermilab, Dec. 14-15 2009

In honor of Chris Quigg

Chris was Visiting Professor

at Ecole Normale (Supérieure) in Paris

some time ago ...

He knows very well

le cinquième arrondissement

PARIS

....

THE WORLD

so the remaining thing to do, maybe,

is to go together and try to visit

THE SUPERWORLD!

Could half of the particles (at least)

have escaped our direct observations?

 \rightarrow new matter ... ?

 \rightarrow dark matter ... ?

moreover	
	Could there exist

new LIGHT PARTICLES ?

NEUTRAL, and VERY WEAKLY COUPLED ?

among which ...

a new light gauge boson U?

axionlike ... particles ?

light dark matter particles ?

new forces beyond strong, electro + weak, gravity ... ?

...

New particles, new forces, and also new space-time ...

Should the notion of space-time be extended to

new (fermionic or bosonic) coordinates?

furthermore:

extended supersymmetric theories naturally formulated

with extra (compact) space dimensions

starting point:

STANDARD MODEL

describes

strong, electromagnetic and weak interactions of quarks and leptons

 $SU(3) imes SU(2) imes U(1)\;$ gauge group

spin-1 gauge bosons:	gluons, W^+ , W^- , Z , photon
spin- $\frac{1}{2}$ <u>fermions</u> :	quarks and leptons

+ 1 (still unobserved) spin-0

Englert-Brout-Higgs boson

associated with spontaneous electroweak symmetry breaking

- remarkably successful

- but leaves many questions unanswered: (a long list ...)

• fundamental Higgs fields ? (do they actually exist?)

many physicists long reluctant to accept fundamental spin-0 fields

• why a potential
$$V(\varphi) = \lambda |\varphi|^4 - \mu^2 |\varphi|^2$$
 ?

what is the mass of the B-E-Higgs boson ? ($m_H ~=~ \mu ~\sqrt{2} ~=~ v ~\sqrt{2 ~\lambda}$...)

is B-E-Higgs sector as in SM, or more complicated ...?

• do **new particles** exist ? maybe also **new forces** ?

after LEP, we think we know all (sequential) quarks and leptons

now essential, in view of growing evidence for

non-baryonic dark matter

Other interrogations:

• role of gravity (related to spacetime through general relativity) can it be more closely connected with particle physics? can one get a consistent theory of quantum gravity? question of cosmological constant Λ

• can interactions be <u>unified ?</u> approach of <u>grand-unification</u>:

 $SU(3) \times SU(2) \times U(1) \subset$ e.g. SU(5), ...

 $\left\{egin{array}{cccc} {
m gluons} & \longleftrightarrow & W^{\pm}, \ Z, \ \gamma & (\,+\,{
m other\,gauge\,bosons}) \ {
m quarks} & \longleftrightarrow & {
m leptons} \end{array}
ight.$

with its own questions: Higgs potential and symmetry breaking, origin of hierarchy of mass scales, many coupling constants, relations between q and l masses ...

• can one relate particles of different spins? etc. ... We have a "new" tool,

SUPERSYMMETRY

What to do with supersymmetry ?

Can it be of any help in the <u>real world</u>

of fundamental particles and interactions ?

(according to common wisdom)

could one relate Fermions constituants of matter

to Bosons, messengers of interactions?

and arrive to some sort of

Unification FORCES \leftrightarrow **MATTER** ??

This would be very attractive !

but unfortunately

things don't work out that way !! ...

SUSY ALGEBRA :

$$\left\{ egin{array}{ll} \{ \ Q \, , \, ar Q \ \} &=& - 2 \ \gamma_\mu \, P^\mu \ & \ \left[\ Q \, , \, P^\mu \,
ight] &=& 0 \end{array}
ight.$$

Gol'fand-Likhtman, Volkov-Akulov, Wess-Zumino, 1970-73

Initial motivations?

- SUSY algebra at origin of parity non-conservation ? (no...)
- *is the neutrino a Goldstone particle ?* (*no*...)

V-A model: SUSY without bosons $!!! \longrightarrow$ SUSY algebra does not require superpartners ... !

- extend to 4 dim. supergauge transformations on 2d string worldsheet

\rightarrow SUSY gauge theories in 4 dim.

 $P^{\mu} \hspace{0.1in}
ightarrow$ space-time translations

relation with spacetime, general relativity \rightarrow supergravity

spacetime
$$x^{\mu}=\left(egin{array}{c} ct\ ec{x}\end{array}
ight)$$
 extended to superspace $(x^{\mu},\ heta$)

$$heta = \begin{pmatrix} heta_1 \\ heta_2 \\ heta_3 \\ heta_4 \end{pmatrix} = ext{spin-} rac{1}{2} ext{ Majorana anticommuting coordinate}$$

$$heta_1 \, heta_2 \ = \ - \, heta_2 \, heta_1 \, , \quad (heta_1)^2 \ = \ 0 \ ...$$

SUPERFIELDS $\Phi(x, \theta)$ describe both BOSONS and FERMIONS

Can SUSY apply to fundamental laws of Nature ?

(what would be the consequences ... ?)

Nature is "obviously" not supersymmetric !

it seems

<u>1</u> (Unbroken) SUSY \Rightarrow Bosons and fermions should have EQUAL MASSES:

 \rightarrow break (spontaneously (?)) susy ??

But: spontaneous susy breaking did not seem possible !

(SUSY vacuum has E = 0, always stable ...)

still it turns out possible, but very constrained

 $(\rightarrow easier to use soft susy-breaking terms: price to pay : many arbitrary parameters ...)$

 \rightarrow predict existence of new particles, but difficult to predict their masses

<u>2</u> Spontaneous SUSY breaking \rightarrow massless spin- $\frac{1}{2}$ Goldstone fermion

where is the spin- $\frac{1}{2}$ Goldstone fermion of SUSY ?

it cannot be a neutrino, why has not it been observed?

```
present answer: eliminated in favor of
```

 \rightarrow

massive spin- $\frac{3}{2}$ GRAVITINO

warning:

this one may still behave very much as a spin- $\frac{1}{2}$ goldstino, if very light ... !!

... which could be *observable* ... !

e.g. through decays of SUSY particles, like

neutralino \rightarrow gravitino + photon

depending on $m_{3/2}$

(cf. "GMSB" models ...)

• Which bosons and fermions relate ?

does not work ...

• How to deal with Majorana fermions ?

SUSY theories systematically involve (self-conjugate) Majorana fermions

while Nature only knows Dirac fermions !

• How to construct **Dirac fermions** ?

How to give fermions

<u>conserved</u> quantum numbers (B, L)?

B and L carried by fermions only (quarks and leptons), not bosons !

this cannot be, in a supersymmetric theory ... !!

seemed to make supersymmetry *irrelevant* to the real world !!

Solution:

1) keep Majorana fermions \rightarrow new class of particles:

photon not associated with ν_e , ν_μ or ν_τ

but with new "photonic neutrino" called in 1977 PHOTINO

and gluons with **GLUINOS** ...

Majorana fermions of SUSY \rightarrow **NEUTRALINOS, GLUINOS**

2) Introduce new BOSONS carrying baryon and lepton numbers

SQUARKS, SLEPTONS

(still you are not safe yet ... see later ...)

 \implies all particles should be associated with **new superpartners**

		${f spin-}rac{1}{2} \ photino \ {f spin-}rac{1}{2} \ gluinos$
leptons	\longleftrightarrow	spin-0 <i>sleptons</i>
quarks	\longleftrightarrow	spin-0 <i>squarks</i>
	•••	

"doubling the number of degrees of freedom" in susy theories

(within "linear realisations" of susy)

SUSY does not relate directly known bosons and fermions !! but:

Known bosons	\longleftrightarrow	New fermions
Known fermions	\longleftrightarrow	New bosons

(long mocked as a sign of irrelevance of supersymmetry ...)

Further problem: get <u>interactions</u> from W^{\pm}, Z , photon and gluon exchanges

avoid unwanted spin-0 exchanges ?

 $(\tilde{q}, \tilde{l} \text{ carrying } B \text{ and } L)$

related with introduction of

*R***-symmetry and** *R*-parity

in Susy extensions of the Standard Model,

 \rightarrow pair production of SUSY particles

Stable LSP (usually **neutralino**) candidate for

non-baryonic dark matter of Universe

continuous *R*-symmetry $U(1)_R$

(before susy breaking)

acting "chirally" on susy generator: $\, Q \,
ightarrow \, e^{-\gamma_5 lpha} \, Q \,$

 \rightarrow

Not all possible superpotential interactions admissible ...

Continuous *R*-symmetry \rightarrow progenitor of *R*-parity ...

 $U(1)_R$ reduced to $(-1)^R$ to allow for gravitino and gluino masses

 R_p first defined as discrete symmetry $(-1)^R$

then identified as $(-1)^{2S} (-1)^{3B+L}$

 \rightarrow stable dark matter candidate

R-parity \Rightarrow LSP stable

usually a neutralino

combination of superpartners of neutral gauge and Higgs bosons,

$$\{W_3, W'; h_1^{\circ}, h_2^{\circ}; ...\} \stackrel{SUSY}{\longleftrightarrow} \underbrace{\{\tilde{W}_3, \tilde{W}'; \tilde{h}_1^{\circ}, \tilde{h}_2^{\circ}; ...\}}_{\text{neutralinos}}.$$

relation of dark matter with gauge ($\gamma, Z, ...$) and Higgs bosons

with $\sigma_{ann} \approx$ weak cross sections from squark, slepton, Z or Higgs exchanges

neutralino = *natural WIMP candidate*

supersymmetry does not relate known particles together

No SUSY relation between known particles and forces

but ...

DARK MATTER candidate naturally obtained

from lightest Majorana fermion (neutralino)

in SUSY extension of Standard Model

 \rightarrow

DARK MATTER related with

mediators of ELECTROWEAK INTERACTIONS

\rightarrow possibility of **pair-producing neutralinos**

(i.e. Dark Matter particle candidates) at particle colliders.

Missing energy -momentum signature of SUSY ...

(1977)

neutralinos interact ~ weakly with matter through \tilde{q} etc. exchanges

lightest neutralino became natural DM candidate

Accelerators can look for the Dark Matter of the Universe ...

 $\left\{ egin{array}{ccc} e^+\,e^- &
ightarrow & {\bf 2} \ {\it neutralinos} \ + \ ... \ p \ p &
ightarrow & {\bf 2} \ {\it neutralinos} \ + \ ... \end{array}
ight.$

(..., PETRA, PEP, LEP) FNAL, LHC, ILC, ...

+ additional ingredients needed for

SU(2) imes U(1) electroweak theory

Nucl. Phys. B 90, 104 (1975)

electroweak breaking

we need, also, a pair of doublet Higgs superfields,

$$m{H}_1=egin{pmatrix}m{H}_1^0\m{H}_1^-\m{H}_1^-\end{pmatrix},\ m{H}_2=egin{pmatrix}m{H}_2^+\m{H}_2^0\m{H}_2\end{pmatrix}$$
 , (left-handed)

$$< h_1^0 > = \; rac{v_1}{\sqrt{2}} \, , \; \; < h_2^0 > = \; rac{v_2}{\sqrt{2}}$$

mixing angle
$$eta$$
, $an eta \ = \ rac{v_2}{v_1}$.

WHY ?

• With 1 doublet (H_1) : $\begin{cases} 1 \text{ charged Dirac "gaugino"} \quad \tilde{W}^- = \tilde{W}_L^- + \tilde{W}_R^- \\ + 1 \text{ chiral charged "higgsino" e.g.} \quad \tilde{h}_{1L}^- \end{cases}$

one massive charged Dirac fermion ($\tilde{h}^-_{1L}+\tilde{W}^-_R$)

with only one Brout-Englert-Higgs doublet one charged chiral fermion (\tilde{W}_L^-) massless

• With
$$H_1$$
, H_2 :

$$\left\{ egin{array}{cccc} ilde{W}_1^- &=& ilde{h}_{1L}^- + ilde{W}_R^- \ ilde{W}_2^- &=& ilde{W}_L^- + (ilde{h}_{2L}^+)^c \end{array}
ight.$$

2 "charginos"

mass matrix

$${\cal M} \,= \left(egin{array}{cc} (m_2) & rac{g\,v_2}{\sqrt{2}} = m_W\sqrt{2}\,\sineta \ rac{g\,v_1}{\sqrt{2}} = m_W\sqrt{2}\,\coseta & \mu \end{array}
ight)$$

Ingredients of Supersymmetric Standard Model (minimal or not ...)

(Phys. Lett. 64B (1976) 159; 69B (1977) 489)

1) $SU(3) \times SU(2) \times U(1)$ gauge superfields

2) chiral quark and lepton superfields

3) two doublet Higgs superfields H_1 and H_2

4) trilinear superpotential for q and l masses

• Superpotential <u>even function</u> of quark and lepton superfields !

R-invariance $\rightarrow R$ -parity

 $[\times extra-U(1)]$

Minimal content of

Supersymmetric Standard Model

Spin 1	Spin 1/2	Spin 0	
gluons g photon γ	gluinos $ ilde{g}$ photino $ ilde{\gamma}$		
W^{\pm}	winos $\widetilde{W}_{1,2}^{\pm}$ zinos $\widetilde{Z}_{1,2}$	H^{\pm} H	Higgs
	higgsino $ ilde{h}^0$	h,A	bosons
	leptons <i>l</i> quarks <i>q</i>	sleptons $ ilde{l}$ squarks $ ilde{q}$	

2 neutral gauginos + 2 higgsinos mix \rightarrow 4 neutralinos

"MSSM"

Nice features of Higgs interactions

in supersymmetric theories :

(and not so nice ones ...)

SUSY quartic Higgs interactions

appear as electroweak gauge interactions, with

$$V_{ ext{quartic}} \;=\; rac{g^2+g'^2}{8} \;(h_1^\dagger \, h_1 - h_2^\dagger \, h_2)^2 \;+\; rac{g^2}{2} \;|h_1^\dagger \, h_2|^2$$

= quartic Higgs potential of the MSSM

Quartic Higgs couplings fixed by electroweak gauge couplings !

at the origin of mass inequality

 $m \text{ (lightest Higgs)} \leq m_Z + \underbrace{\text{rad. corr.}}_{should be large !!} in MSSM$

(potentially problematic, as it requires radiative correction effects to be large)

(need squark masses \approx TeV scale, recreates ("little") hierarchy problem ...)

"Beyond MSSM"

 \rightarrow

EXTRA SINGLET S (NPB 75)

in the old days : start with h_1 , h_2 , but $\mu \rightarrow \mu^2 (h_1^{\dagger} h_1 + h_2^{\dagger} h_2)$ ($\pm \xi g'/2$ term) obstacle for satisfactory EW breaking with v_1 and $v_2 \neq 0$ at tree level without terms breaking explicitly susy μ promoted to dynamical variable $\mu(x, \theta)$

$\mu H_1 H_2 \rightarrow$

trilinear coupling

 $\lambda H_1 H_2 S$ with extra singlet chiral superfield S (NPB 1975)

(generates effectively an h_1h_2 soft term ...)

 $\lambda H_1 H_2 S + f(S)$ superpotential

N/nMSSM

with
$$f(S) = rac{\kappa}{3}S^3 + rac{\mu_S}{2}S^2 + \sigma S$$

$$egin{aligned} \mathcal{W} &= \lambda_e\,H_1.ar{E}\,L\,+\,\lambda_d\,H_1.ar{D}\,Q\,-\,\lambda_u\,H_2.ar{U}\,Q \ &+ \lambda\,H_1H_2\,S\,+\,\underbrace{rac{\kappa}{3}\,S^3\,+\,rac{\mu_S}{2}\,S^2\,+\,\sigma\,S}{f(S)} \end{aligned}$$

Restrictions on f(S) may be obtained by using

extra- $U(1)_A$ and/or R symmetries

$$egin{aligned} V &= rac{g^2+g'^2}{8} \,\,(h_1^\dagger \,h_1 - h_2^\dagger \,h_2)^2 \,+\, rac{g^2}{2} \,\,|h_1^\dagger \,h_2|^2 \ &+ \,ig| \lambda \,h_1 h_2 + rac{\partial f(s)}{\partial s} ig|^2 \,+\, \lambda^2 \,|s|^2 \,\,(h_1^\dagger h_1 + h_2^\dagger h_2) \,+\, ... \,\,. \end{aligned}$$

new bound on the lightest Higgs mass, λ allows to get all Higgs bosons sufficiently heavy

 \rightarrow additional singlino

effective $\,\mu$ term may be regenerated through a translation of the extra singlet S

as now needed for the two charginos both $> m_W$ (in MSSM and N/nMSSM)

EXTRA-U(1)

supersymmetric extensions of the SM

gauge extra-U(1) symmetry ...

extra-U(1) gauge superfield ("USSM")

 \rightarrow additional gaugino

where is such an extra U(1) coming from ?

a number of possibilities ...

"New" possibility for extra-U(1) symmetry : electroweak breaking as in SUSY, with 2 doublets:

cf. h_1 and h_2 of SUSY extensions of the standard model

$$m{h}_1 = egin{pmatrix} m{h}_1^\circ \ m{h}_1^- \end{pmatrix}, \ \ m{h}_2^c = egin{pmatrix} -m{h}_2^{\circ*} \ m{h}_2^- \end{pmatrix} o \ \ m{h}_2 = egin{pmatrix} m{h}_2^+ \ m{h}_2^\circ \end{pmatrix}$$

allows for possibility of <u>rotating independently the two doublets</u> (Nucl. Phys. B 78, 14 (1974)):

 \rightarrow extra- U(1) symmetry

$$h_1 \,
ightarrow \, e^{ilpha} \, h_1 \,, \ \ h_2^c
ightarrow \, e^{-ilpha} \, h_2^c \
ightarrow \, h_2 \
ightarrow \, e^{ilpha} \, h_2$$

constraining interaction potential and Yukawa couplings

constraints on superpotential from extra-U(1) ...

 $(\lambda H_1 H_2 S \ OK \ with \ S
ightarrow e^{-2ilpha}S)$

extra-U(1) acts as

$$H_1 \stackrel{U}{\longrightarrow} e^{i\,lpha} \, H_1 \,, \ \ H_2 \stackrel{U}{\longrightarrow} e^{i\,lpha} \, H_2 \,, \ \ S \stackrel{U}{\longrightarrow} e^{-\,2\,i\,lpha} \, S$$

$$(Q, ar{U}, ar{D}; \, L, ar{E}) \; \stackrel{U}{\longrightarrow} \; e^{-\,i\,rac{lpha}{2}} \left(Q, ar{U}, ar{D}; \, L, ar{E}
ight)$$

for superpotential to be invariant.

(acts axially on quarks and leptons)

axial $U(1)_A$

(often known as 'PQ' symmetry)

extra-U(1), global or local,

broken explicitly

by (small) superpotential terms and/or (small) soft susy-breaking terms

or spontaneously

through the 2 Higgs doublets and possibly a large singlet v.e.v.

BUT WHAT ABOUT A POSSIBLE "AXION"?

Extra-U(1) (if global and unbroken in \mathcal{L}) could lead to massless (or quasimassless) Goldstone boson now known as an "axion". (momentarily) present in early models (1974-1976) with $h_1 \rightarrow e^{i\alpha} h_1$, $h_2 \rightarrow e^{i\alpha} h_2$ before extra-U(1) symmetry $U(1)_A$ was either

1) explicitly broken through $f(S) = \sigma S$... superpotential interactions

of singlet S

 \rightarrow N/nMSSM (would-be "axion" acquires mass $\propto \lambda$) (but can sometimes "resurrect" !)

or 2) gauged (assuming anomalies cancelled):

would-be axion "eaten away" by new gauge boson Z' (later also called U boson)

 \rightarrow USSM

(**1977**) (but can also sometimes "resurrect"!)

LIGHT DARK MATTER

with C. Boehm

(just a few words)

Too light dark matter particles (say in MeV to GeV range) normally <u>forbidden</u> as they could not annihilate sufficiently \rightarrow relic abundance too large ...

unless a new interaction exists

as induced by a new light spin-1 U boson

sufficiently strong at lower energies,

DM annihilations into e^+e^- , for spin- $\frac{1}{2}$ or spin-0 particles

extra-U(1) symmetry ...

how a light **U** could be detected ?

Relic density of light dark matter particles:

$$\chi \, \chi ~
ightarrow ~e^+ \, e^-$$

(other modes possible, $uar{
u}$... , depending on m_{χ})

$$\sigma_{
m ann} \, v_{
m rel} \, \simeq \, \, rac{v_\chi^2}{.16} \, \left(rac{c_\chi \, f_e}{10^{-6}}
ight)^2 \, \left(rac{m_\chi imes 1.8 \, {
m MeV}}{m_U^2 - 4 \, m_\chi^2}
ight)^2 \, \, (4 \, {
m pb})$$

allows to estimate required $\ c_\chi \, f_e$

for correct annihilation cross section at freeze out time

$$egin{array}{lll} | c_\chi \, f_e \, | \ \simeq \ (B^{ee}_{
m ann})^{rac{1}{2}} \ 10^{-3} \ rac{| \, m_U^2 - 4 \, m_\chi^2 \, |}{m_\chi \, (1.8 \ {
m GeV})} \ . \end{array}$$

or
$$|c_{\chi} f_e| \simeq (B_{\mathrm{ann}}^{ee})^{rac{1}{2}} 10^{-6} \; rac{|m_U^2 - 4 \, m_{\chi}^2|}{m_{\chi} \left(1.8 \; \mathrm{MeV}
ight)} \; .$$

SEARCHING FOR A LIGHT U

NPB 187, 184, 1981, ..., PRD 75, 115017 (2007); PLB 675, 267 (2009)

 ψ and Υ DECAYS:

 $\Upsilon
ightarrow \, \gamma \, U$

Amplitude for producing U proportional to gauge coupling

 ${\cal A}\,(\,A\,
ightarrow\,B\,+\,U_{
m long}\,)\,\,\propto\,\,g"\,\,...$ may be very small !! (at least in visible sector)

such a gauge boson will be unobservable,

if its gauge coupling is extremely small ...

it seems ...

NO !

longitudinal polarisation $\epsilon^{\mu}_L\simeq {k^{\mu}\over m_U}$ gets singular when $g"\to 0$, as $m_U\propto g"\ldots\to 0$!

$${\cal A}\,(\,A\,
ightarrow\,B\,+\,U_{
m long}\,)\,\,\propto\,\,g"\,\,rac{k_U^\mu}{m_U}\,< B\,|J_{\mu\,U}|\,A\,>\,\,=\,\,rac{1}{F_U}\,\,k_U^\mu\,< B\,|J_{\mu\,U}|\,A\,>$$

$$k^\mu\, ar\psi\, \gamma_\mu \gamma_5\, \psi\,
ightarrow\, 2\,m_q\, \psi\, \gamma_5\, \psi$$

A very light U does not decouple for very small gauge coupling ! behaves as "eaten-away" pseudoscalar Goldstone boson a

effective pseudoscalar coupling: $f_{q,l P} = f_{q,l A} \frac{2 m_{q,l}}{m_U}$

Equivalence theorem similar to Equivalence theorem of SUSY according to which very light spin- $\frac{3}{2}$ gravitino behaves as spin- $\frac{1}{2}$ goldstino

$$\Rightarrow \hspace{0.5cm} B(\Upsilon \hspace{0.1cm}
ightarrow V) \hspace{0.1cm} \simeq \hspace{0.1cm} B(\Upsilon \hspace{0.1cm}
ightarrow \gamma \hspace{0.1cm} a)$$

same experiment can search for light spin-1 gauge boson, or spin-0 pseudoscalar, or scalar

Decays:
$$\begin{cases} U \to \nu \bar{\nu} \text{ (or light dark matter particles)} \\ U \to e^+ e^-, \ \mu^+ \mu^-, \ \dots \text{ (depending on } m_U) \end{cases}$$

 \Rightarrow search for

New gauge boson U possibly light if extra-U(1) gauge coupling is small

behaves very much as almost "equivalent"

spin-0 'axionlike' (eaten-away) pseudoscalar a

with a (possibly large) singlet v.e.v.:

$$a = \boxed{\cos \zeta} \underbrace{\left(\sqrt{2} \operatorname{Im}\left(\sin\beta h_{1}^{\circ} + \cos\beta h_{2}^{\circ}\right)}_{A} + \frac{\sin\zeta}{\operatorname{singlet}} \underbrace{\left(\sqrt{2} \operatorname{Im} s\right)}_{\text{singlet}}$$

 $r = \cos \zeta$ = INVISIBILITY PARAMETER

a = mixing of doublet and singlet components

PLB 95, 285, 1980; NPB 187, 184, 1981

(reduces strength or effective strength of U or a interactions, cf. "invisible axion")

Axial coupling

$$f_{q,l\,A} \simeq \underbrace{2^{-rac{3}{4}} \; G_{F}^{rac{1}{2}} \; m_{oldsymbol{U}}}_{2\; 10^{-6}\; m_{oldsymbol{U}}({
m MeV})} \; imes \left\{ egin{array}{cccc} r\,x \, = \, \cos\zeta \; \coteta \; (u,\,c,\,t) \ r/x \, = \, \cos\zeta \; aneta \; (d,\,s,\,b;\,e,\,\mu,\, au) \end{array}
ight.$$

Equivalent pseudoscalar coupling

$$f_{q,l \ P} \ \simeq \ \underbrace{ 2^{rac{1}{4}} \, G_F^{\ rac{1}{2}} \, m_{q,l}}_{4 \ 10^{-6} \ m_{q,l}({
m MeV})} \ imes \ \left\{ egin{array}{c} r \, x \ = \ \cos \zeta \ \cot eta \ (u, \ c, \ t) \ r / x \ = \ \cos \zeta \ an eta \ (d, \ s, \ b; \ e, \ \mu, \ au) \end{array}
ight.$$

ratio: 2
$$\frac{m_{q,l}}{m_U}$$

$$r = \cos \zeta = invisibility \, parameter$$
 $\tan \beta = \frac{v_2}{v_1}$

 $egin{array}{rcl} B \left(\,\psi \,
ightarrow \,\gamma \, U/a \,
ight) \,\simeq & 5 \,\, 10^{-5} \,\, \cos^2 \zeta \, \cot^2 eta \,\, C_\psi \, F_\psi \ B \left(\,\Upsilon \,
ightarrow \,\gamma \,\, U/a \,
ight) \,\simeq & 2 \,\, 10^{-4} \,\, \cos^2 \zeta \, an^2 eta \,\, C_\Upsilon \, F_\Upsilon \end{array}$

(*F* phase space factor; $C \gtrsim \frac{1}{2}$ for QCD radiative and rel. corrections)

Y DECAYS *PLB* 675, 267 (2009)

CLEO, BABAR hep-ex/0808.0017

 $|f_{bA}| < 4 \ 10^{-7} \ m_U(\text{MeV}) / \sqrt{B_{\text{inv}}}$, or $|f_{bP}| < 4 \ 10^{-3} / \sqrt{B_{\text{inv}}}$

For invisibly decaying boson: $f_{bP} < 4 \ 10^{-3}$

5 times smaller than standard Higgs coupling to $\, b, \, m_b/v \, \simeq \, 2 \, 10^{-2}$

 \implies

doublet fraction: $r^2 = \cos^2 \zeta < 4\% / (\tan^2 \beta B_{inv})$

a (< 4 % doublet, > 96 % singlet) for $\tan \beta > 1$ with inv. decays $\Rightarrow B(\psi \rightarrow \gamma + \text{neutral}) B_{\text{inv}} \lesssim 10^{-6} / \tan^4 \beta$, i.e. $\leq 10^{-8}$ for tan $\beta \gtrsim 3$, independently of $B_{\rm inv}$

Consequences for couplings to LEPTONS

implications for the couplings of the new spin-1 or spin-0 boson to e, μ or τ . !!

Universality of the axial coupling of the U: $f_{eA} = f_{\mu A} = f_{\tau A} = f_{dA} = f_{sA} = f_{bA}$

 \implies limit on f_{bA} applies to f_{eA} :

 $|f_{eA}| \ < \ 4 \ 10^{-7} \ m_U({
m MeV}) \, / \sqrt{B_{
m inv}} \ , \quad |f_{eP}| \ < \ 4 \ 10^{-7} \, / \sqrt{B_{
m inv}}$

for invisible decays: $f_{eP} < \frac{1}{5}$ standard Higgs coupling to the electron

$$\Upsilon$$
 DECAYS $\rightarrow \gamma + (\mu^+ \mu^-)$

BABAR: hep-ex/0902.2176

 $r/x = \cos\zeta\, aneta\, \lesssim\, .15/\sqrt{B_{\mu\mu}} \;\; \Longrightarrow$

 $egin{aligned} |f_{bA}| \ \lesssim \ 3 \ 10^{-7} \ m_U(MeV)/\sqrt{B_{\mu\mu}} \ \|f_{bP}\| \ \lesssim \ 3 \ 10^{-3}/\sqrt{B_{\mu\mu}} \ , \ or \ |f_{bS}| \ \lesssim \ 5 \ 10^{-3}/\sqrt{B_{\mu\mu}} \end{aligned}$

(for $B_{\mu\mu} \simeq 1$, lim. on f_{bP} is $\simeq 15 \%$ of SM Higgs coupling to b).

doublet fraction: $r^2 = \cos^2 \zeta ~\lesssim~ 2\,\% \,/\,(an^2\,eta\,B_{\mu\mu})$.

$$B \left(\psi \rightarrow \gamma + \textit{neutral} \right) \; B_{\mu\mu} \; \lesssim \; 5 \; 10^{-7} / \, an^4 eta \; ,$$

i.e. $\lesssim 5 \, 10^{-9}$ for $\tan \beta \gtrsim 3$, independently of $B_{\mu\mu}$.

LIGHT DARK MATTER in Y DECAYS

PLB 269, 213 (1991); PRD 74, 054034, 2006, ...

 $\left\{ egin{array}{ccc} \Upsilon
ightarrow & \chi\chi &= ext{ invisible} \ \Upsilon
ightarrow \gamma \ \chi\chi &= \gamma + ext{ invisible} \end{array}
ight.$

mediated by light U (or a spin-0 for $\gamma \chi \chi$)

(no decay $\Upsilon \rightarrow invisible$ mediated by spin-0)

 $(\Upsilon \rightarrow \chi \chi \text{ and } \gamma \ \chi \chi \text{ test vector and axial couplings to } b, \text{ resp.})$

 $\Upsilon \rightarrow \chi \chi \chi < 3 \, 10^{-4} \Rightarrow |c_{\chi} f_{bV}| < 5 \, 10^{-3}$ arXiv:0910.2587 (as recently improved by Babar)

 $\Upsilon o \gamma \; \underbrace{\chi \, \chi}_{ ext{inv}} \; ext{can constrain} \left| c_\chi \, f_{bA}
ight|$

Many other processes ...

(Dark Matter annihilations, 511 keV line, other signatures ...)

Parity violations in atomic physics

strong limit : $\sqrt{|f_{eA} f_{qV}|} < 10^{-7} m_U(\text{MeV})$

Other constraints from:

g-2

 ν scatterings

Supernovae explosions

•••

Direct production in $\,e^+\,e^-
ightarrow\,\gamma\,U$

CONCLUSIONS

pair-production of **SUSY particles** at colliders

complementarity:

expected Higgs sector: 2 doublets + possible singlet stable LSP (neutralino ...) \rightarrow dark matter

Search for dark matter ... Explore the high-energy frontier

waiting for more experimental data, especially from LHC ...

But another frontier exists at lower energies !

light weakly (or very weakly) coupled new particles

NEW PARTICLES, NEW FORCES, NEW (super) SPACETIME DIMENSIONS ...

et, comme dirait Chris, un grand merci aux gentils organisateurs de la Conférence