Are signatures of ultrahigh energy cosmic rays detectable in gamma rays?

K.K., D. Allard and M. Lemoine, submitted to A&A
Why do we care about multi-messenger Astrophysics at UHE?

astrophysical sources
Why do we care about multi-messenger Astrophysics at UHE?

- Astrophysical sources
- Acceleration (e.g., in shocks)
- Ultrahigh energy cosmic rays
Why do we care about multi-messenger Astrophysics at UHE?

- astrophysical sources
- acceleration (ex. in shocks)
- ultrahigh energy cosmic rays
Why do we care about multi-messenger Astrophysics at UHE?

- astrophysical sources
- acceleration (ex. in shocks)
- ultrahigh energy cosmic rays
Why do we care about multi-messenger Astrophysics at UHE?

astrophysical sources

acceleration (ex. in shocks)

ultrahigh energy cosmic rays

no powerful sources as counterparts!

Auger Coll. 2008
Why do we care about multi-messenger Astrophysics at UHE?

astrophysical sources

acceleration (ex. in shocks)

ultrahigh energy cosmic rays

no powerful sources as counterparts!
Why do we care about multi-messenger Astrophysics at UHE?

- astrophysical sources
- acceleration (ex. in shocks)
- ultrahigh energy cosmic rays
- extragalactic magnetic fields?
- deflection: spatial decorrelation
- time delay: temporal decorrelation if transient source

no powerful sources as counterparts!
Why do we care about multi-messenger Astrophysics at UHE?

- Astrophysical sources
- Ultrahigh energy cosmic rays
- Acceleration (ex. in shocks)
- Interactions on baryonic and photonic (CMB/IR) backgrounds
- Extragalactic magnetic fields?
 - Deflection: spatial decorrelation
 - Time delay: temporal decorrelation if transient source
- Neutrinos
- \(\gamma \) rays

No powerful sources as counterparts!
Why do we care about multi-messenger Astrophysics at UHE?

astrophysical sources

acceleration (ex. in shocks)

ultrahigh energy cosmic rays

interactions on baryonic and photonic (CMB/IR) backgrounds

extragalactic magnetic fields?
- deflection: spatial decorrelation
- time delay: temporal decorrelation if transient source

observable?
what information?

no powerful sources as counterparts!

neutrinos γ rays
Why do we care about multi-messenger Astrophysics at UHE?

astrophysical sources

ultrahigh energy cosmic rays

acceleration (ex. in shocks)

interactions on baryonic and photonic (CMB/IR) backgrounds

extragalactic magnetic fields?

deflection: spatial decorrelation

time delay: temporal decorrelation if transient source

neutrinos

γ rays

observable?

what information?
Fate of gamma rays after their production by UHECRs

\[\text{CR (10}^{20} \text{eV}) + \gamma_{\text{bg}} \rightarrow e^+e^- + \gamma_{\text{UHE}} \]

Cascade in IGM
- interactions with radio/CMB photons
 - \(\gamma \gamma_{\text{bg}} \rightarrow e^+e^- \)
 - Inverse Compton
 - no more interactions
 - \(\gamma \rightarrow \gamma_{\text{TeV-GeV}} \)

Synchrotron nearby source
- if source environment sufficiently magnetized
 - \(e^+ \rightarrow \gamma_{\text{GeV}} \)
 - \(B, \text{ synchrotron} \)
 - no more interactions
 - \(\gamma \rightarrow \gamma_{\text{ray halo of limited extension around source}} \)
Fate of gamma rays after their production by UHECRs

\[
\text{CR (10}^20\text{ eV)} \quad + \quad \gamma_{bg} \quad \rightarrow \quad e^+, \quad \gamma_{UHE}
\]

Cascade in IGM
- Pair production
 - \(\gamma\gamma_{bg} \rightarrow e^+e^- \)
 - Inverse Compton
 - \(e\gamma_{bg} \rightarrow e\gamma \) \(\rightarrow \quad \gamma\text{TeV-GeV} \)
 - B deflections

Synchrotron nearby source
- If source environment sufficiently magnetized
 - \(e^+ \) \(\rightarrow \quad \gamma\text{GeV} \)
 - B, synchrotron
 - No more interactions
 - Gamma ray halo of limited extension around source
Fate of gamma rays after their production by UHECRs

\[\text{CR} (10^{20} \text{ eV}) + \gamma_{\text{bg}} \rightarrow e^+e^- + \gamma_{\text{bg}} \rightarrow e \gamma \rightarrow \ldots \rightarrow \gamma_{\text{TeV-GeV}} \]

Cascade in IGM
- Interactions with radio/CMB photons
 - Pair production
 - Inverse Compton
 - No more interactions

Synchrotron nearby source
- If source environment sufficiently magnetized
 - \(e^+ \rightarrow \gamma_{\text{GeV}} \)
 - \(B, \text{ synchrotron} \)
 - No more interactions
 - \(\gamma \) ray halo of limited extension around source

Homogeneous B: Flux completely diluted if \(B_{\text{IGM}} > 3 \times 10^{-11} \text{G} \)

Protheroe 86, Protheroe & Stanev 93, Aharonian et al. 94
Fate of gamma rays after their production by UHECRs

\[
\text{CR (10}^{20}\text{ eV)} + \gamma_{\text{bg}} \rightarrow \text{e}^+ , \gamma_{\text{UHE}}
\]

\[\gamma_{\text{bg}} \rightarrow e^+ e^- \rightarrow e \gamma_{\text{bg}} \rightarrow e \gamma \rightarrow ... \gamma_{\text{TeV-GeV}}\]

- Pair production
- Inverse Compton
- B deflections

Cascade in IGM

- Interactions with radio/CMB photons

Synchrotron nearby source

- If source environment sufficiently magnetized

\[e^+ \rightarrow \gamma_{\text{GeV}}\]

- B, synchrotron
- No more interactions

- \(\gamma\) ray halo of limited extension around source

Homogeneous B: Flux completely diluted if \(B_{\text{IGM}} > 3 \times 10^{-11}\) G

Protheroe 86, Protheroe & Stanev 93, Aharonian et al. 94
Fate of gamma rays after their production by UHECRs

\[
\text{CR (10}^{20}\text{ eV) + } \gamma_{\text{bg}} \rightarrow e^+ e^- \rightarrow e \gamma \rightarrow \ldots \gamma \text{TeV-GeV}
\]

- **Cascade in IGM**
 - Interactions with radio/CMB photons
 - \(\gamma \gamma_{\text{bg}} \rightarrow e^+ e^- \rightarrow e \gamma \rightarrow \ldots \gamma \text{TeV-GeV} \)
 - Inverse Compton, no more interactions
 - B deflections

- **Synchrotron nearby source**
 - If source environment sufficiently magnetized
 - \(e^+ \rightarrow \gamma \text{GeV} \)
 - B, synchrotron, no more interactions
 - \(\gamma \) ray halo of limited extension around source

homogeneous B: Flux completely diluted if \(B_{\text{IGM}} > 3 \times 10^{-11}\text{ G} \)

Protheroe 86, Protheroe & Stanev 93, Aharonian et al. 94

inhomogeneous B: Flux dilution according to fraction of Universe where \(B_{\text{IGM}} > 3 \times 10^{-11}\text{ G} \)

K.K. et al. 2010
Fate of gamma rays after their production by UHECRs

CR \(10^{20} \text{ eV}\) + \(\gamma_{\text{bg}}\) → \(e^+ e^-\) → \(e\gamma_{\text{bg}} \rightarrow e\gamma\) → ... \(\gamma\) TeV-GeV

Cascade in IGM

- Interactions with radio/CMB photons
- Pair production
- Inverse Compton
- No more interactions
- B deflections

Synchrotron nearby source

- If source environment sufficiently magnetized
- \(e^+\) → \(\gamma\) GeV
- B, synchrotron
- No more interactions
- \(\gamma\) ray halo of limited extension around source

homogeneous B: flux completely diluted if \(B_{\text{IGM}} > 3\times10^{-11}\) G

Protheroe 86, Protheroe & Stanev 93, Aharonian et al. 94

inhomogeneous B: flux dilution according to fraction of Universe where \(B_{\text{IGM}} > 3\times10^{-11}\) G

K.K. et al. 2010

\[
\frac{dN_{\gamma}}{dE_{\gamma}} \approx \frac{f_{1d}(<B_0)}{8\pi d^2} e L_{\text{cr}} \left(\frac{E_{\gamma}}{E_{\gamma,\text{max}}} \right)^{1/2}
\]
Fate of gamma rays after their production by UHECRs

\[\text{CR (10^{20} \text{eV}) + \gamma_{bg}} \rightarrow e^+ e^- \rightarrow e\gamma_{bg} \rightarrow e\gamma \rightarrow \ldots \ \gamma_{\text{TeV-GeV}} \]

\[\text{Inverse Compton} \quad \text{no more interactions} \]

Cascade in IGM

interactions with radio/CMB photons

Synchrotron nearby source

if source environment sufficiently magnetized

\[e^+ \rightarrow \gamma_{\text{GeV}} \]

\[B, \ \text{synchrotron} \quad \text{no more interactions} \]

\[\gamma \text{ ray halo of limited extension around source} \]

homogeneous B: flux completely diluted if \(B_{\text{IGM}} > 3 \times 10^{-11} \text{G} \)

Protheroe 86, Protheroe & Stanev 93, Aharonian et al. 94

inhomogeneous B: flux dilution according to fraction of Universe where \(B_{\text{IGM}} > 3 \times 10^{-11} \text{G} \)

K.K. et al. 2010

\[E_\gamma^2 \frac{dN_\gamma}{dE_\gamma} \approx f_{1d}(< B_0) L_{\text{cr}} e^{L_{\text{cr}} 2} \left(\frac{E_\gamma}{E_{\gamma,\text{max}}} \right)^{1/2} \]
Fate of gamma rays after their production by UHECRs

\[\text{CR (10}^{20} \text{eV)} + \gamma_{bg} \rightarrow e^{+} + e^{-} \rightarrow e \gamma_{bg} \rightarrow e \gamma \rightarrow ... \]

\[\gamma_{\text{TeV-GeV}} \rightarrow \gamma_{\text{UHE}} \]

Cascade in IGM

interactions with radio/CMB photons

\[\gamma_{bg} \rightarrow e^{+} + e^{-} \rightarrow e \gamma_{bg} \rightarrow e \gamma \rightarrow ... \]

Inverse Compton no more interactions

B deflections

Synchrotron nearby source

if source environment sufficiently magnetized

\[e^{+} \rightarrow \gamma_{\text{GeV}} \]

B, synchrotron no more interactions

\[\gamma \text{ ray halo of limited extension around source} \]

homogeneous B: flux completely diluted if \(B_{\text{IGM}} > 3 \times 10^{-11} \text{ G} \)

Protheroe 86, Protheroe & Stanev 93, Aharonian et al. 94

inhomogeneous B: flux dilution according to fraction of Universe where \(B_{\text{IGM}} > 3 \times 10^{-11} \text{ G} \)

K.K. et al. 2010

\[E_{\gamma}^{2} \frac{dN_{\gamma}}{dE_{\gamma}} \approx f_{1d}(< B_{0}) e^{- \frac{L_{\text{sr}}}{8 \pi d^{2}}} e^{e_{\gamma} \left(\frac{E_{\gamma}}{E_{\gamma,\text{max}}} \right)^{1/2}} \]

homogeneous magnetized sphere around source

Gabici & Aharonian 06

filaments, inhomogeneous B

K.K. et al. 2010
Explore influence of astrophysical parameters on gamma ray signal

Chemical compositions for UHECR: protons, Galactic mixed, iron, [mixed + low $E_{p,max}$]

Various extragalactic magnetic field configurations (intensity, contrast, ...)

adapted from Allard et al. 08
Interactions of nuclei with cosmic backgrounds + multimessengers (γ, ν)

Allard et al. 05, SOPHIA (Mücke et al. 1999), EPOS (Werner et al. 06), CONEX (Bergmann et al. 07)

Gamma-ray cascades

Explore influence of astrophysical parameters on gamma ray signal

Chemical compositions for UHECR: protons, Galactic mixed, iron, [mixed + low $E_{p,\text{max}}$]

Various extragalactic magnetic field configurations (intensity, contrast, ...)

adapted from Allard et al. 08

... using a complete propagation and interaction code

Propagation in magnetic fields
K.K. & Lemoine 2008a
Synchrotron component
+ cascaded component: flux \(\times \) a few

\[
L_{cr}(E > 10^{19} \text{ eV}) = 10^{42} \text{ erg s}^{-1}
\]

average type of source: fits Auger spectrum for \(n_{\text{sources}} = 10^{-5} \text{ Mpc}^{-3} \)

distance to observer \(d = 100 \text{ Mpc} \)
\(E_{\text{max}} = 10^{20.5} \text{ eV} \), spectral index = 2.3

Extragalactic magnetic field configurations

Chemical compositions of primary UHECR
Synchrotron component
+ cascaded component: flux x a few

$L_{cr}(E > 10^{19} \text{ eV}) = 10^{42} \text{ erg s}^{-1}$

average type of source: fits Auger spectrum for $n_{\text{sources}} = 10^{-5} \text{ Mpc}^{-3}$

distance to observer $d = 100 \text{ Mpc}$
$E_{\text{max}} = 10^{20.5} \text{ eV}$, spectral index = 2.3

Extragalactic magnetic field configurations

Chemical compositions of primary UHECR

flux ultimately depends on injected energy at the source robustness according to B and composition.
Synchrotron component
+ cascaded component: flux x a few

\[L_{cr}(E>10^{19} \text{ eV}) = 10^{42} \text{ erg s}^{-1} \]

average type of source: fits Auger spectrum for \(n_{\text{sources}} = 10^{-5} \text{ Mpc}^{-3} \)

distance to observer \(d = 100 \text{ Mpc} \)
\(E_{\text{max}} = 10^{20.5} \text{ eV} \), spectral index = 2.3

Extragalactic magnetic field configurations

Chemical compositions of primary UHECR

![Graph showing synchrotron spectra for different magnetic fields and injection spectra.](image-url)
Synchrotron component
+ cascaded component: flux \times a few

$L_{cr}(E>10^{19} \text{ eV}) = 10^{42} \text{ erg s}^{-1}$

average type of source: fits Auger spectrum for $n_{\text{sources}} = 10^{-5} \text{ Mpc}^{-3}$

distance to observer $d = 100 \text{ Mpc}$

$E_{\text{max}} = 10^{20.5} \text{ eV}$, spectral index $= 2.3$

Extragalactic magnetic field configurations

Chemical compositions of primary UHECR
Synchrotron component
+ cascaded component: flux x a few
\[
L_{cr}(E>10^{19} \text{ eV}) = 10^{42} \text{ erg s}^{-1}
\]
average type of source: fits Auger spectrum for \(n_{\text{sources}} = 10^{-5} \text{ Mpc}^{-3} \)
distance to observer \(d = 100 \text{ Mpc} \)
\(E_{\max} = 10^{20.5} \text{ eV}, \) spectral index = 2.3

Fermi: \(\sim 10^{-10} \text{ GeV cm}^{-2} \text{ s}^{-1} (\theta_{\text{source}}/1^\circ) \)

CTA: \(\sim 10^{-11} \text{ GeV cm}^{-2} \text{ s}^{-1} (\theta_{\text{source}}/0.1^\circ) \)

flux ultimately depends on injected energy at the source
robustness according to B and composition.

detectable only if:
- particularly powerful source (rare)
- close-by source (Cen A?)
Case of particularly powerful sources

\[L_{cr,19} = 10^{44} \text{ erg s}^{-1} \]
\[d = 100 \text{ Mpc} \]

\[L_{cr,19} = 10^{46} \text{ erg s}^{-1} \]
\[d = 1 \text{ Gpc} \]

Note: would be consistent with a heavy composition at UHE (Auger?)
Case of particularly powerful sources

$L_{\text{cr,19}} = 10^{44} \text{ erg s}^{-1}$

$d = 100 \text{ Mpc}$

$E^2 \phi(E) (\text{eV}^2/\text{m}^2\text{s}\text{sr})$

* * flux integrated up to angular extension θ

$L_{\text{cr,19}} = 10^{46} \text{ erg s}^{-1}$

$d = 1 \text{ Gpc}$

Note: would be consistent with a heavy composition at UHE (Auger?)
Case of particularly powerful sources

- Flux integrated up to angular extension θ

- **Fermi/CTA at 10 GeV:**
 \[\sim 10^{-10} \text{ GeV cm}^{-2} \text{ s}^{-1} \left(\frac{\theta_{\text{source}}}{1^\circ} \right) \]

- **$L_{\text{cr,19}} = 10^{46} \text{ erg s}^{-1}$**
 \[d = 1 \text{ Gpc} \]

- **$L_{\text{cr,19}} = 10^{44} \text{ erg s}^{-1}$**
 \[d = 100 \text{ Mpc} \]

- Note: would be consistent with a heavy composition at UHE (Auger?)
Case of particularly powerful sources

Extended emission (NOT pointlike) ensures that the gamma emission is an **UHECR signature**.
Distinguishable from leptonic/hadronic contribution produced inside the source.

\[L_{\text{cr,19}} = 10^{44} \text{ erg s}^{-1} \]
\[d = 100 \text{ Mpc} \]

Fermi/CTA at 10 GeV:
\~ 10^{-10} \text{ GeV cm}^{-2} \text{ s}^{-1} (\theta_{\text{source}}/1^{\circ})

\[L_{\text{cr,19}} = 10^{46} \text{ erg s}^{-1} \]
\[d = 1 \text{ Gpc} \]
for synchrotron emission:
 extended and strong magnetic field necessary

-> lobes of Cen A?
 $B_{\text{lobes}} \sim 1 \mu G, l_{\text{coh}} \sim 20 \text{kpc}, R_{\text{lobe}} \sim 100 \text{kpc}, L_{\text{cr,19}} \sim 3 \times 10^{39} \text{erg s}^{-1}$

7 degrees in the sky -> sensitivity loss of $\theta_{\text{source}}/\theta_{\text{PSF}} \sim 7$

$$F_{\text{lobe,10 TeV}} \sim \left(\frac{d_{\text{Cen A}}}{d_{\text{fil}}}
ight)^{-2} \frac{L_{\text{Cen A}}}{10^{42} \text{erg/s}} \frac{R_{\text{lobe}}}{5 \text{Mpc}} F_{\text{fil,10 GeV}}$$

total decrease of factor $\sim 10^3$ compared to average sources -> hardly observable

UHE photons could be detectable with Auger *Taylor et al. 09*
expected rate of $>10^{19}$ eV photons from Cen A, assuming it is responsible for 10% of the 6×10^{19} eV flux: **0.2–0.3 events/yr**
Are signatures of UHECR detectable in gamma rays?

K.K., D. Allard, M. Lemoine, submitted to A&A

We studied the detectability of UHECR signatures in gamma rays, taking into account major astrophysical constraints:

- source environment
- magnetic configuration in the Universe
- types of emission: EM cascade, synchrotron emission
- UHECR composition
- source luminosity
- observed UHECR spectrum

Flux ultimately depends on injected energy at the source (robust according to B, composition, ...).

Our conclusions on detectability:

- average type of sources not observable by current and upcoming instruments (2 orders of magnitude)
- powerful sources:
 \[L_{19} = 10^{44} \text{ erg s}^{-1} \text{ at } 100 \text{ Mpc at limit of observed CR spectrum}, \] would produce a detectable \(\gamma \) halo of \(\sim 2^\circ \)
 \[L_{19} = 10^{46} \text{ erg s}^{-1} \text{ at } 1 \text{ Gpc produce } 10\% \text{ of observed CR spectrum}, \] and a detectable \(\gamma \) halo of fract. of deg.
 Note: halo = clear signature of UHECR

- close-by sources: Cen A
 synchrotron radiation due to injection of UHECR in lobes not observable
 UHE emission potentially observable with Auger if Cen A is responsible for 10% of the \(6 \times 10^{19} \) eV flux