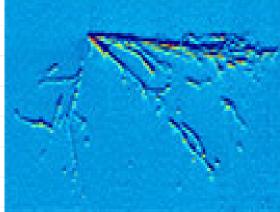


Outline

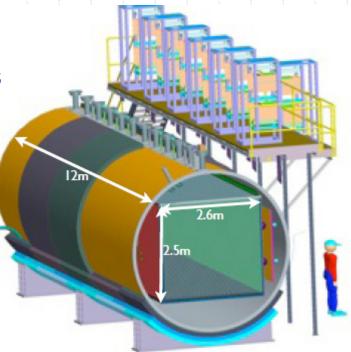

- Technical description of the Experiment & Detector
- Current Status
- FY10 Scope of FNAL work
- FY11 Scope of FNAL work
- Out years

The MicroBooNE Experiment

- A new detector located on the Booster Neutrino Beam
- A liquid argon Time Projection Chamber detector
 - LArTPC a wire chamber inside a cryostat vessel
 - The liquid argon is both the target and the detection medium
 - o Interactions in the argon volume produce ionization particles that drift along

electric field lines to wire readout planes

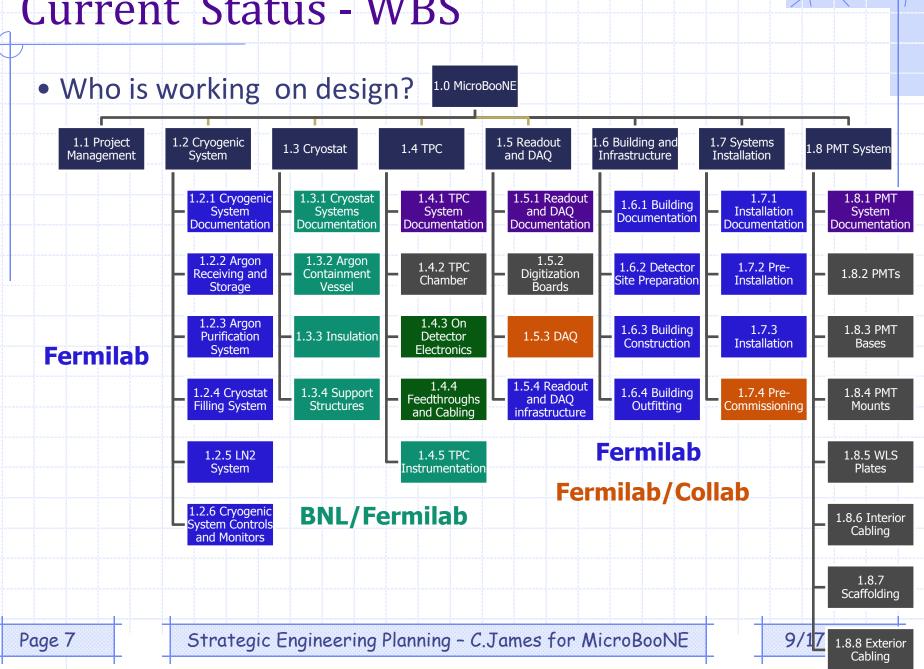
- A detector technology well-suited to neutrino physics
 - Calorimetry information and excellent spatial resolution
 - Argon also produces scintillation light triggering
- Both physics and detector R&D goals
 - Neutrino cross-sections and MB low-E excess events
 - If the detector can do this, then it can do what LBNE needs
 - In building and operating μB, learn how to scale up in size
 - \circ μB -> proposed LBNE LAr detector is a factor of ~100



NuMI Beam neutrino interaction in the ArgoNeuT detector - Sep 16, 2009

The MicroBooNE Detector

- Detector Conceptual Design
 - ~12m long, ~3.8m diameter cylindrical cryostat
 - Single-walled, 16" of insulation
 - Rectangular box inside is the TPC
 - One long side is the wire planes.
 - 3 planes, Y,U,V, about 10,000 wires
 - Other sides are the E-field cage
 - Creates the force to drift ions to the wires
 - Electronics is fairly conventional
 - PAs sit inside, at cryo temperatures
 - Digitizing sit outside
 - Data rate can be high use compression
 - PMTs in cryogen, for triggering
 - Cryogenics plant
 - Need high purity, ppt, ~170-tons of cryogen
 - Detector doesn't work without pure argon


Located in a new Building, next to the MiniBooNE detector enclosure

- History
 - Funding ceiling set at \$20M. Timescale Detector operating in 2013
 - Experiment was granted Stage 1 approval in July 2008
 - Project Manager appointed October 2008
- What has been accomplished?
 - Provided DOE with the information they need to form the Mission Need, CD-0
 - Project set-up: OPMO meetings, develop WBS, recruit sub-system managers from the collaboration, teach them what they need to do to meet the CD-1 requirements, prepare the CD-1 level project documents
 - Proceed with conceptual design work, to at least a CD-1-readiness level, as funding levels at collaborating institutions allow
 - Some parts of the detector had designs beyond the conceptual level when the experiment was proposed – TPC and some electronics for example
 - Other parts of the detector started with a less developed design; effort applied at FNAL during FY09 has helped these catch up

- What stage is the Project in?
 - Pre-CD0 R&D. CD-1 preparation.
- Dates for CD milestones
 - CD-0 "soon". "The Mission Need is being read by all the right people".
 - Been hearing this since June, however......
 - I have requested a CD-1 Readiness Director's Review be scheduled for early November. DOE CD-1 Review in ?? January??
- Who is working on the Project?
 - Management Request was 2.0 FTE, got about 1.25 FTE
 - all part-time, in varying degrees
 - C. James (PM), B. Baller (CDR editor), D. Boehnlein (Project documents preparation), Rich Krull & Ken Domann (schedule), Brian Rebel (Cryogenics manager), John Voirin (Installation manager)

Current Status - WBS

- Who is working on the Design (and some R&D)?
 - By WBS Sub-systems -
 - Cryogenics Stephen Pordes, Brian Rebel, Dave Schmitz, Rich Schmitt, Bob Sanders, Dell Allspach, Jim Catalanello, Victor Majdanski
 - Cryostat Stephen Pordes, Brian Rebel, Dave Schmitz, Rich Schmitt
 - TPC small amount of Machine shop time for prototypes
 - Readout and DAQ Jin-Yuan Wu; inquiries with PPD-EE on support for readout infrastructure (racks, PS, etc); inquiries with CD on DAQ support
 - Building Dixon Bogert, Russ Alber
 - Installation John Voirin, Bruce Baller, Stephen Pordes, Rich Schmitt
 - PMT Sten Hansen (R&D base design); Eileen Hahn (R&D TPB coating setup)
 - Engineering request was 1.3 FTE; got ~0.5 FTE, with the missing part all in cryogenics.
 - Did not use all of the design/drafting request, because the cryogenic engineering effort wasn't there

- Are there enough scientists assigned to guide the work?
 - FNAL scientists on MicroBooNE
 - B. Baller, C. James, S. Pordes, B. Rebel (Wilson Fellow), G. Rameika, D.
 Schmitz (Lederman Fellow), Jin-Yuan Wu
 - Dave Boehnlein helps with project documents development, but is not in the MicroBooNE collaboration
 - None of these are full-time. MicroBooNE Σ = 1.6 FTE
 - B. Baller ArgoNeuT, LBNE
 - C. James MINOS, ArgoNeuT
 - S. Pordes Detector R&D, LAPD
 - B. Rebel MINOS, NOvA, ArgoNeuT, LAPD
 - G. Rameika MINOS, ArgoNeuT, LAPD, LBNE
 - D. Schmitz MiniBooNE, MINERvA
 - Plenty of places to apply more scientific effort no commitments

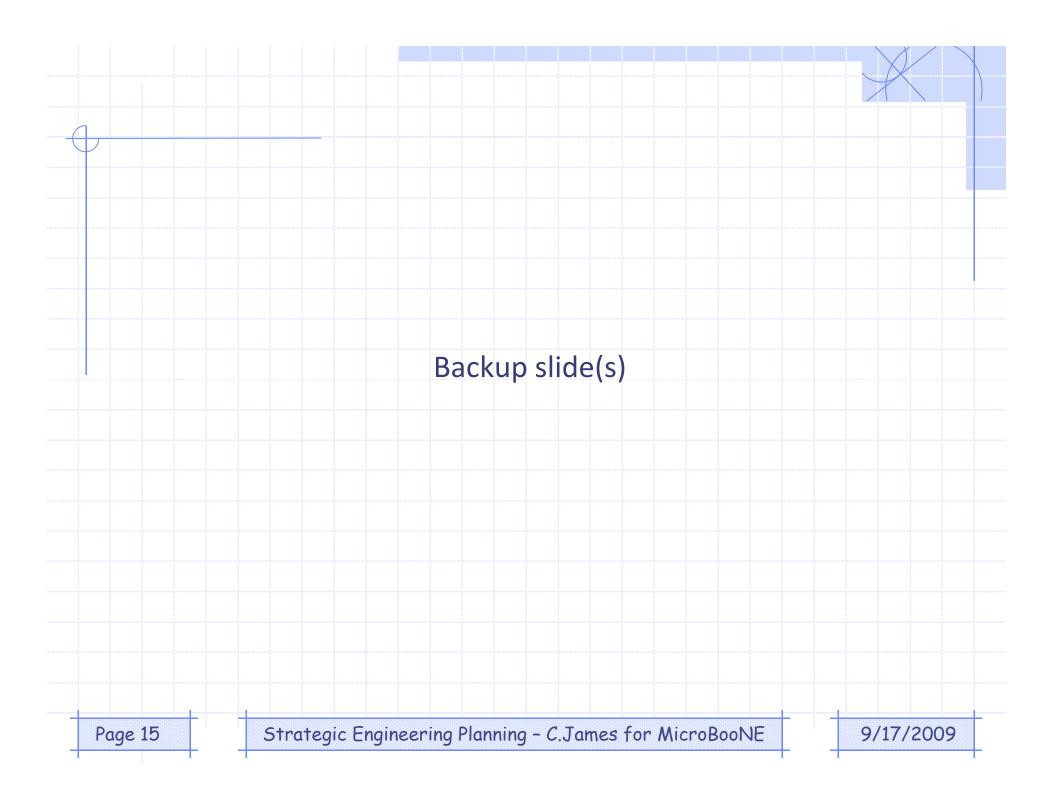
FY10 Scope of Work

- Overview
 - Continue preparations for Director's & DOE CD-1 Review
 - Carry designs to ~50% level, sufficient to set the baseline cost and schedule plan
 - CD-2 in FY10 Q2 or Q3, with all the preparation effort that implies, such as a Technical Design Report
 - FY-10 budget is about \$2M. About right? Maybe......
 - All effort is in (what used to be called) EDIA Engineering, Design,
 - Rule of thumb EDIA was about 20% of total cost. Total cost is about \$20M, then all EDIA is about \$4M. Need to reach 50% design level in FY10, half of the EDIA, which is about \$2M.
 - A good fraction of this goes to collaborating institutions......
 - Initial FY10 OHAP was 7.6 FTE; now at 9.26 FTE
 - Added: procurement; Mech and Cryo Engineering, Process Controls,
 Applications Development, Mechanical Technical Manager, Electronics Engineer to serve as a Project Integration Manager

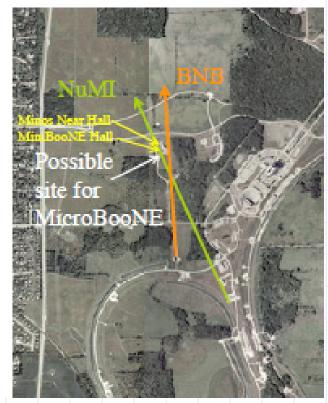
FY10 Scope of Work

- Detailed List Cryogenics 50% design level on :
 - 1.2.1 Cryogenic System Documentation
 - Preliminary ODH analysis, fully developed specifications, TDR
 - 1.2.2 Argon Receiving and Storage
 - Transfer lines; equipment to test argon for levels of contaminants before it goes into the system; large dewar to hold purified argon from cryostat
 - 1.2.3 Argon Purification System
 - Circulation system (pumps), re-liquification, filtering arrays
 - 1.2.4 Cryostat Filling System
 - o Gas purge, first warm, then controlled chill; vacuum system
 - 1.2.5 LN2 System
 - Used for argon liquification
 - 1.2.6 Cryogenic System Controls and Monitors
 - Purity monitors; temperature, pressure, level, etc; valve controls; process system controls
- .75 -> 1.0 FTE Cryo Engineer; .25 -> .5 Mechanical Engineer; Design & Drafting. Make up for FY09 missing effort

FY10 Scope of Work


- Detailed List 50% design level on
 - Cryostat, with Insulation and Support
 - Assisted by BNL engineering
 - FY10 OHAP increase on FNAL Mech Eng, 0.25 FTE -> 0.5 FTE
 - TPC Instrumentation and Readout Infrastructure
 - FNAL portions are rack layout, rack cooling, rack monitoring, power supplies for electronics and TPC, cabling
 - FY10 OHAP, FNAL EE, 1 FTE (no change)
 - DAQ
 - Added Applications Development, 0.3 FTE
 - Installation
 - J. Voirin, Inst Mgr
 - Added Mechanical Technical Manager, 0.25 FTE

FY11 Scope of Work


- Overview
 - Complete Designs
 - CD-3 in FY11 Q2, with all the preparation effort that implies
 - FY-11 budget will be (we hope) DOE MIE funds. \$6M \$7M?
 - Come down a bit in overall engineering, up a bit in overall design/drafting. Start technicians for construction phase.
 - Initial FY10 OHAP was 12.5 FTE; now at 14 FTE
 - Added: procurement; a bit more Mech Engineering, Applications Development,
 Mechanical Technical Manager, Electronics Engineer to serve as a Project
 Integration Manager, a bit more drafting
- The cryogenics system continues to be the main part of the FNAL effort – design completion and into fabrication & construction

How do things change in the Out Years?

- Not too many out-years out there. Just FY12 mostly. Hope to be running in 2013.
- More collaborators?
 - Just added Kansas State. Online Monitoring?
 - Plenty to do collaboration needs more people & institutions. Might change the technical manpower needs from FNAL a bit. Could help with scientific oversight of design & construction tasks. But the experiment also needs scientists working on physics software – both simulation and reconstruction. Not part of the Project.

Where

- On surface, next to MiniBooNE enclosure
 - An addition to that enclosure
- On the Booster Neutrino Beam axis (plan view, not elevation)
 - Will also see neutrinos from the NuMI beam