
Grid Compute Resources and
Job Management

2

How do we access the grid ?

 Command line with tools that you'll use
 Specialised applications

 Ex: Write a program to process images that sends data to run on
the grid as an inbuilt feature.

 Web portals
 I2U2
 SIDGrid

3

Grid Middleware glues the grid
together

 A short, intuitive definition:

the software that glues together different clusters
into a grid, taking into consideration the socio-
political side of things (such as common policies on
who can use what, how much, and what for)

4

Grid middleware

 Offers services that couple users with remote
resources through resource brokers

 Remote process management
 Co-allocation of resources
 Storage access
 Information
 Security
 QoS

5

Globus Toolkit

 the de facto standard for grid middleware.
 Developed at ANL & UChicago (Globus Alliance)
 Open source
 Adopted by different scientific communities and industries
 Conceived as an open set of architectures, services and

software libraries that support grids and grid applications
 Provides services in major areas of distributed systems:

 Core services
 Data management
 Security

6

Globus - core services

 Are the basic infra-structure needed to create grid services
 Authorization
 Message level security
 System level services (e.g., monitoring)
 Associated data management provides file services

 GridFTP
 RFT (Reliable File Transfer)
 RLS (Replica Location Service)

 Globus uses GT4
 Promotes open high-performance computing (HPC)

7

Local Resource Managers (LRM)

 Compute resources have a local resource manager (LRM)
that controls:
 Who is allowed to run jobs
 How jobs run on a specific resource
 Specifies the order and location of jobs

 Example policy:
 Each cluster node can run one job.
 If there are more jobs, then they must wait in a queue

 LRMs allow nodes in a cluster can be reserved for a specific
person

 Examples: PBS, LSF, Condor

8

GRAM
 Globus Resource Allocation Manager

 GRAM = provides a standardised interface to
submit jobs to LRMs.

 Clients submit a job request to GRAM
 GRAM translates into something a(ny) LRM can

understand

 …. Same job request can be used for many
different kinds of LRM

9

Job Management on a Grid

User

The Grid

Condor

PBS

LSF

fork

GRAM

Site A

Site B

Site C

Site D

10

Two versions of GRAM

 There are two versions of GRAM
 GT2

 Own protocols
 Older
 More widely used
 No longer actively developed

 GT4
 Web services
 Newer
 New features go into GRAM4

 In this module, will be using GT2

11

GRAM’s abilities

 Given a job specification:

 Creates an environment for the job
 Stages files to and from the environment
 Submits a job to a local resource manager
 Monitors a job
 Sends notifications of the job state change
 Streams a job’s stdout/err during execution

12

GRAM components
 Clients –

 eg. globus-job-submit, globus-run
 Gatekeeper

 Server
 Accepts job submissions
 Handles security

 Jobmanager
 Knows how to send a job into the local resource manager
 Different job managers for different LRMs

13

GRAM components

Worker nodes / CPUsWorker node / CPU

Worker node / CPU

Worker node / CPU

Worker node / CPU

Worker node / CPU

LRM eg Condor, PBS, LSF

Gatekeeper

Internet

JobmanagerJobmanager

globus-job-run

Submitting machine
(e.g. User's workstation)

14

Remote Resource Access: Globus

“globusrun
 myjob …”

Globus GRAM Protocol Globus
JobManager

fork()

Organization A Organization B

15

Submitting a job with GRAM
 globus-job-run command

 $ globus-job-run rookery.uchicago.edu /bin/hostname

 Run '/bin/hostname' on the resource rookery.uchicago.edu

 We don't care what LRM is used on 'rookery'. This
command works with any LRM.

16

The client can describe the job with GRAM’s
Resource Specifcation Language (RSL)
 Example:

 &(executable = a.out)
 (directory = /home/nobody)

 (arguments = arg1 "arg 2")

 Submit with:
 globusrun -f spec.rsl -r
rookery.uchicago.edu

17

Use other programs to generate RSL

 RSL job descriptions can become very complicated
 We can use other programs to generate RSL for us

 Example: Condor-G – next section

18

Condor
 Condor is a specialized workload management system for

compute-intensive jobs.

 is a software system that creates an HTC
environment
 Created at UW-Madison

 Detects machine availability
 Harnesses available resources
 Uses remote system calls to send R/W operations over the

network
 Provides powerful resource management by matching

resource owners with consumers (broker)

http://www.cs.wisc.edu/condor/

19

How Condor works

Condor provides:
• a job queueing mechanism

• scheduling policy

• priority scheme
• resource monitoring, and
• resource management.

Users submit their serial or parallel jobs to Condor,

 Condor places them into a queue,

 … chooses when and where to run the jobs based upon a policy,

 … carefully monitors their progress, and

 … ultimately informs the user upon completion.

20

Condor - features

 Checkpoint & migration
 Remote system calls

 Able to transfer data files and executables across machines

 Job ordering
 Job requirements and preferences can be specified via powerful

expressions

21

Condor lets you manage a large
number of jobs.
 Specify the jobs in a file and submit them to Condor
 Condor runs them and keeps you notified on their progress

 Mechanisms to help you manage huge numbers of jobs
(1000’s), all the data, etc.

 Handles inter-job dependencies (DAGMan)
 Users can set Condor's job priorities
 Condor administrators can set user priorities
 Can do this as:

 Local resource manager (LRM) on a compute resource
 Grid client submitting to GRAM (as Condor-G)

22

Condor-G

 is the job management part of Condor.
 Hint: Install Condor-G to submit to resources

accessible through a Globus interface.
 Condor-G does not create a grid service.
 It only deals with using remote grid services.

23

Condor-G …

 does whatever it takes to run your jobs, even if …
 The gatekeeper is temporarily unavailable
 The job manager crashes
 Your local machine crashes
 The network goes down

24

Globus GRAM Protocol Globus
GRAM

Submit to LRM

Organization A Organization B

Condor-GCondor-G

myjob1
myjob2
myjob3
myjob4
myjob5
…

Remote Resource Access:
Condor-G + Globus + Condor

25

Condor-G: Access non-Condor Grid
resources

Globus
 middleware deployed across entire

Grid
 remote access to computational

resources
 dependable, robust data transfer

Condor
 job scheduling across multiple

resources
 strong fault tolerance with

checkpointing and migration
 layered over Globus as “personal

batch system” for the Grid

26

Four Steps to Run a Job with Condor

 These choices tell Condor
 how
 when
 where to run the job,
 and describe exactly what you want to run.

 Choose a Universe for your job
 Make your job batch-ready
 Create a submit description file
 Run condor_submit

27

1. Choose a Universe
 There are many choices

 Vanilla: any old job
 Grid: run jobs on the grid
 Standard: checkpointing & remote I/O
 Java: better for Java jobs
 MPI: Run parallel MPI jobs
 Virtual Machine: Run a virtual machine as job
 …

 For now, we’ll just consider vanilla

28

2. Make your job batch-ready

 Must be able to run in the background:
 no interactive input, windows, GUI, etc.

 Condor is designed to run jobs as a batch system,
with pre-defined inputs for jobs

 Can still use STDIN, STDOUT, and STDERR (the
keyboard and the screen), but files are used for
these instead of the actual devices

 Organize data files

29

3. Create a Submit Description File

 A plain ASCII text file
 Condor does not care about file extensions

 Tells Condor about your job:

 Which executable to run and where to find it
 Which universe
 Location of input, output and error files
 Command-line arguments, if any
 Environment variables
 Any special requirements or preferences

30

Simple Submit Description File

myjob.submit file
Simple condor_submit input file
(Lines beginning with # are comments)
NOTE: the words on the left side are not
case sensitive, but filenames are!
Universe = vanilla
Executable = analysis
Log = my_job.log
Queue

31

4. Run condor_submit

 You give condor_submit the name of the submit
file you have created:

condor_submit my_job.submit

 condor_submit parses the submit file

32

Another Submit Description File

Example condor_submit input file
(Lines beginning with # are comments)
NOTE: the words on the left side are not
case sensitive, but filenames are!
Universe = vanilla
Executable = /home/wright/condor/my_job.condor
Input = my_job.stdin
Output = my_job.stdout
Error = my_job.stderr
Arguments = -arg1 -arg2
InitialDir = /home/wright/condor/run_1
Queue

33

Details

 Lots of options available in the submit file
 Commands to

 watch the queue,
 the state of your pool,
 and lots more

 You’ll see much of this in the hands-on exercises.

34

Other Condor commands

 condor_q – show status of job queue

 condor_status – show status of compute nodes
 condor_rm – remove a job
 condor_hold – hold a job temporarily
 condor_release – release a job from hold

35

Submitting more complex jobs

 express dependencies between jobs

 ⇒ WORKFLOWS
 And also, we would like the workflow to

be managed even in the face of failures

36

Want other Scheduling possibilities?
Use the Scheduler Universe

 In addition to VANILLA, another job universe is the
Scheduler Universe.

 Scheduler Universe jobs run on the submitting machine
and serve as a meta-scheduler.

 Condor’s Scheduler Universe lets you set up and
manage job workflows.

 DAGMan meta-scheduler included
 DAGMan manages these jobs

37

DAGMan

 Directed Acyclic Graph Manager

 DAGMan allows you to specify the dependencies between your
Condor jobs, so it can manage them automatically for you.

 (e.g., “Don’t run job “B” until job “A” has completed
successfully.”)

38

What is a DAG?

 A DAG is the data structure used by
DAGMan to represent these dependencies.

 Each job is a “node” in the DAG.

 Each node can have any number of “parent”
or “children” nodes – as long as there are no
loops!

Job A

Job B Job C

Job D

39

 A DAG is defined by a .dag file, listing each of its nodes and their
dependencies:

diamond.dag
Job A a.sub
Job B b.sub
Job C c.sub
Job D d.sub
Parent A Child B C
Parent B C Child D

 each node will run the Condor job specified by its accompanying
Condor submit file

Defning a DAG

Job A

Job B Job C

Job D

40

Submitting a DAG

 To start your DAG, just run condor_submit_dag with your .dag file,
and Condor will start a personal DAGMan daemon which to begin running
your jobs:

% condor_submit_dag diamond.dag

 condor_submit_dag submits a Scheduler Universe Job with DAGMan as
the executable.

 Thus the DAGMan daemon itself runs as a Condor job, so you don’t have
to baby-sit it.

41

DAGMan

Running a DAG

 DAGMan acts as a “meta-scheduler”, managing the
submission of your jobs to Condor-G based on the DAG
dependencies.

Condor-G
Job
Queue

C

D

A

A

B
.dag
File

42

DAGMan

Running a DAG (cont’d)

 DAGMan holds & submits jobs to the Condor-G queue at
the appropriate times.

Condor-G
Job
Queue

C

D

B

C

B

A

43

DAGMan

Running a DAG (cont’d)

 In case of a job failure, DAGMan continues until it can no longer make
progress, and then creates a “rescue” file with the current state of the DAG.

Condor-G
Job
Queue

X

D

A

B
Rescue

File

44

DAGMan

Recovering a DAG
 -- fault tolerance

 Once the failed job is ready to be re-run, the rescue file can
be used to restore the prior state of the DAG.

Condor-G
Job
Queue

C

D

A

B
Rescue

File

C

45

DAGMan

Recovering a DAG (cont’d)

 Once that job completes, DAGMan will continue the DAG
as if the failure never happened.

Condor-G
Job
Queue

C

D

A

B

D

46

DAGMan

Finishing a DAG

 Once the DAG is complete, the DAGMan job itself is
finished, and exits.

Condor-G
Job
Queue

C

D

A

B

47

We have seen how Condor:

… monitors submitted jobs and reports progress

… implements your policy on the execution order
of the jobs

… keeps a log of your job activities

48

Long jobs: if my jobs run for weeks
…

 What happens to my job when
 a machine is shut down
 there is a network outage, or
 another job with higher priority preempts it?

 Do I lose all of those hours or days of
computation time??

 What happens when they get pre-empted?
 How can I add fault tolerance to my jobs?

49

provides two important services to your job:
process checkpoint

 remote system calls.

Condor’s Standard Universe to the
rescue!

 Condor can support various combinations of
features/environments in different “Universes”

 Different Universes provide different functionalities to your
job:
 Vanilla: Run any serial job
 Scheduler: Plug in a scheduler
 Standard: Support for transparent process

checkpoint and restart

50

Process Checkpointing

 Condor’s process checkpointing mechanism saves the
entire state of a process into a checkpoint file
 Memory, CPU, I/O, etc.

 The process can then be restarted from the point it left
off

 Typically no changes to your job’s source code needed
—however, your job must be relinked with Condor’s
Standard Universe support library

51

OSG & job submissions

 OSG sites present interfaces allowing remotely
submitted jobs to be accepted, queued and executed
locally.

 OSG supports the Condor-G job submission client
which interfaces to either the pre-web service or web
services GRAM Globus interface at the executing
site.

 Job managers at the backend of the GRAM
gatekeeper support job execution by local Condor,
LSF, PBS, or SGE batch systems.

Acknowledgments:
This presentation based on:
Grid Resources and Job Management

Jaime Frey and Becky Gietzel

Condor Project

U. Wisconsin-Madison

