WG1: Neutrino, Rare Muon and Kaon Physics summary

David E. Jaffe, Bob Tschirhart

Workshop on Applications of High Intensity Proton Accelerators October 19-21, 2009

David E. Jaffe, Bob Tschirhart (BNL)

21 Oct 09 1 / 13

Motivation: Physics beyond the Standard Model

ProcessPrediction ν oscillations (CP violation, etc.)

Measurement

$$\begin{array}{ll} \mu^+ \to e^+ \gamma & \mathcal{B}_{SM} \sim 10^{-54} & < 1.2 \times 10^{-11} \\ \mu^- N \to e^- N & \mathcal{B}_{SUSY} \geq 10^{-18} & < 4.3 \times 10^{-12} \text{ (Ti)} \\ g_\mu - 2 & a_\mu^{exp} - a_\mu^{SM} = (27.6 \pm 8.1) \times 10^{-10} \\ \mu \text{ EDM} & 0 & < 2 \times 10^{-19} \text{ } e \cdot cm \\ & \text{SUSY} \sim 10^{-24} \text{ } e \cdot cm \end{array}$$

 $\begin{array}{ll} {\cal K}^+ \to \pi^+ \nu \bar{\nu} & {\cal B}_{SM} = (8.5 \pm 0.7) \times 10^{-11} & (17.3^{+11.5}_{-10.5}) \times 10^{-11} \\ {\cal K}^0_L \to \pi^0 \nu \bar{\nu} & {\cal B}_{SM} = (2.5 \pm 0.4) \times 10^{-11} & < 6.7 \times 10^{-8} \end{array}$

David E. Jaffe, Bob Tschirhart (BNL)

LBNE MI ν beam (M.Bishai)

Long-baseline neutrino program

- 1280 km baseline to Homestake
- 20-year program
- 0.5 < E_ν < 10 GeV to address most ν oscillation questions. Lower E_ν not easily accessible due to Fermi motion.
- 700 kW @ 120 GeV (pre-ProjectX) with capability of 2MW @ 60
 120 GeV(ProjectX)
- Further design & optimization of target, focussing, decay region can improve sensitivity
- Fast-extracted beam
- Low-energy ν beam option? (next slide)

Conventional ν beam (M.Bishai)

Green lines are oscillation maxima at 1300 km baseline.

MiniBoone 8 GeV beam($\times 10$) compared to 120 GeV MI beam

- Can increase MiniBoone 8 GeV ν flux by ×2 – 3 with more efficient focussing, longer decay pipe
- Water Č det. efficiency increases at low energy
- NC background smaller
- Is it possible to run 8 GeV beam interleaved with 120 GeV MI beam in LBNE beamline?
- Need detailed sensitivity calculation

Muons

- ▶ $\mu^+ \rightarrow e^+\gamma$: Current experiment (MEG @ PSI) limited by detector resolution, not beam intensity. Difficult to see how to improve on PSI μ^+ production.
- ▶ $\mu^- N \rightarrow e^- N$: Limited by beam background, so improvements in purity and intensity of μ^- could improve sensitivity
- ► g_µ 2: Improvements on BNL/CERN "magic momentum" technique possible.
- μ EDM is zero in SM. Second-generation sensitivity to new sources of CPV. Copious μ source (and thus proton source) required.

mu2e Muon Beam and Detector

$\mu^- N \rightarrow e^- N$ at ProjectX

- Beam time structure: Pulsed
- Proton beam energy: 2-5 GeV
- Beam pulse width: < 10 30 ns
- Beam pulse interval 0.3 2µs
- ▶ Extinction (proton + muon beam): 10⁻¹¹
- Beam power: > 0.2 (2) MW
- ▶ $B(\mu^- N \to e^- N)/B(\mu^- N \to \nu N) < 10^{-17} \ (< 10^{-18})$ sensitivity

Beam pulse interval depends on Z of capture target and details of beam line.

Advances in μ cooling techniques would be beneficial to this measurement.

Pion yields (S.Striganov, MARS15)

- ► Low energy π⁻ yield from Ta larger than C at P_p = 3 GeV/c
- Normalized low energy π⁺ yield larger at P_p = 3 GeV/c than 8 GeV/c

muon g - 2 (BNL method at magic momentum)

- Beam time structure: Pulsed
- Muon (magic) momentum: 3 GeV/c
- Proton beam energy: 8 GeV
- ▶ Beam pulse width: < 50 ns
- Beam pulse interval: 1ms
- ▶ Extinction: < 10⁻⁴
- Beam power: > 0.2 MW
- \blacktriangleright Backward muon beam? Less background, need 5 GeV π
- Reduce storage ring aperture to reduce unc. in average B field at cost of stored beam intensity

Beam pulse interval driven by 64μ s muon lifetime at 3 GeV/c. Measure muons for 10 lifetimes.

David E. Jaffe, Bob Tschirhart (BNL)

Muon EDM

- Beam time structure: Pulsed
- beam pulse width: < 50 ns</p>
- beam pulse interval: $\sim 10 \mu s$
- ▶ beam extinction: 10⁻⁹
- Muon momentum < 700 MeV/c
- Beam power: > 2 MW to reach $10^{-25} e \cdot cm$ (guess)

$K \rightarrow \pi \nu \bar{\nu}$ at Project X

	$K^+ o \pi^+ \nu \bar{ u}$	$K^0_L o \pi^0 u ar u$
Beam time structure	DC	pulsed (25 MHz)
Proton beam energy	2.6-6 GeV	2.6-6 GeV
Beam pulse width	NA	< 50 ps
Beam pulse interval	NA	$\sim\!40~{ m ns}$
Extinction	NA	10^{-3}
Beam power	2 MW	2 MW
Poth over a star start ICD 2		

Both experiments prefer ICD-2.

Maximum power would allow reduction of phase space of kaon beams for higher beam purity, detection efficiency.

Kaon production (K.Gudima, MARS15-LAQGSM)

Optimal production rate at $T_p \ge 4$ GeV is 8-10× rate at $T_p = 2$ GeV

Considerations for kaon beams at ProjectX

- K^+ experiment uses stopped beam.
 - At low energy T_p = 2.6 GeV K⁺ stopping rate is 180× AGS, kaon production is not optimal and π⁺/K⁺ is 6× worse than at 6 GeV.
 - Requires improved separation. Perhaps RF separation is superior to electromagnetostatic separation (P.Cooper).
- ▶ Neutral kaon experiment uses TOF technique.
 - At $T_p = 2.6$ GeV K_L^0 flux would be $25 \times$ KOPIO proposal, K_L^0 /neutron is 4 times worse than KOPIO.
 - At $T_p = 6$ GeV, K_L^0 /watt would be $3 \times$ higher still.
 - Need detailed optimization of target, neutral beam and detector.

Potential problem: Destruction of production target at 2 MW.