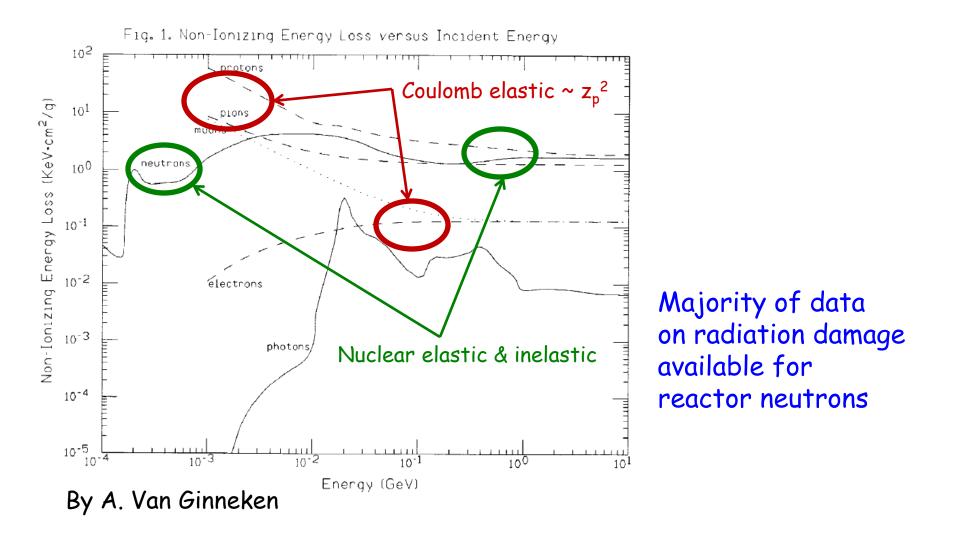


Accelerator Physics Center

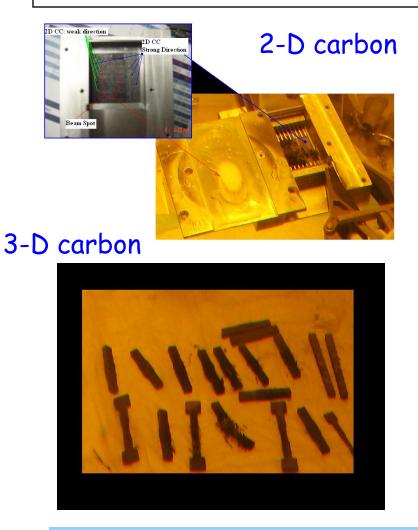
SIMULATION AND VERIFICATION OF DPA IN MATERIALS

N. Mokhov, I. Rakhno, S. Striganov Fermilab

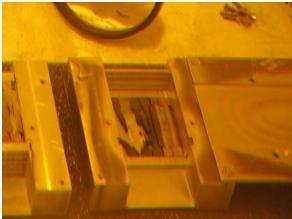
Workshop on Applications of High-Intensity Proton Accelerators Fermilab October 19-21, 2009


- Radiation Damage by High-Intensity Beams
- DPA Model in MARS15
- Verification for Proton and Heavy Ion Beams
- BLIP Tests at 0.165 GeV for 0.7-MW 120-GeV LBNE
- Summary

Introduction

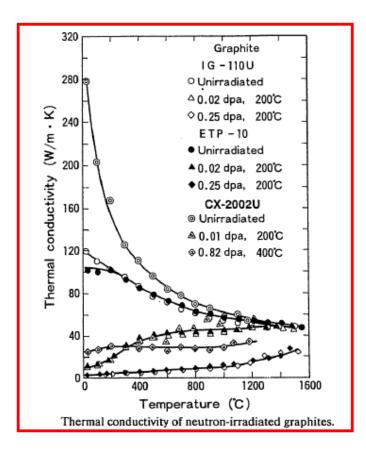

Radiation damage is displacement of atoms from their equilibrium position in a crystalline lattice due to irradiation with formation of interstitial atoms and vacancies in the lattice. Resulting deterioration of material (critical) properties is measured – in the most universal way – as a function of displacements per atom (DPA).

DPA is a strong function of projectile type, energy and charge as well as material properties including its temperature. The phenomenon becomes very serious for high-intensity beams especially for high-charge heavy ions $(~z^2)$, being identified, for example at FRIB and FAIR, as one of the critical issues, limiting lifetime of targets to as low as a few weeks.


DPA/NIEL vs Particle Type and Energy in Silicon

Nick Simos' Rad. Damage Studies at BLIP for LHC

Graphite


A threshold exists on carbon composites and graphite (fluence ~10^21 p/cm2)

AHIPA Workshop, Fermilab, October 19-21, 2009

DPA - N.V. Mokhov

Neutron Data and Findings at BLIP

Reactor data

100-200 MeV protons at BLIP

Glidcop in both axial and transverse directions sees 40% reduction at ~1 dpa.

3-D CC (~ 0.2 dpa) conductivity reduces by a factor of 3.2.

2-D CC (~0.2 dpa) measured under irradiated conditions (to be compared with company data).

Graphite (~0.2 dpa) conductivity reduces by a factor of 6.

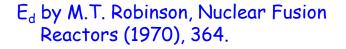
DPA Model in MARS15 (1)

A primary knock-on atom (PKA), created in elastic particle-nucleus collisions, can, in turn, generate a cascade of atomic displacements, energy permitting. This is taken into account via damage function, v(T). Number of atomic displacements per target atom (DPA) and per unit particle fluence:

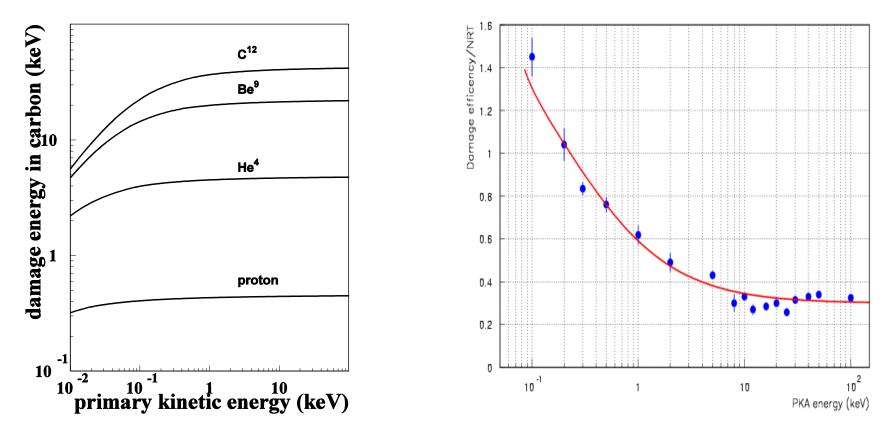
$$\sigma_d(E) = \int_{T_d}^{T_{\text{max}}} \frac{d\sigma(E,T)}{dT} \nu(T) dT$$

where E is kinetic energy of projectile, T is kinetic energy transferred to the recoil atom, T_d is the displacement energy, and T_{max} is the highest recoil energy according to kinematics.

Modified Kinchin-Pease damage model:


v(T) =
$$\begin{bmatrix} 0 & (T < T_d) \\ 1 & (T_d \le T < 2.5T_d) \\ k(T)E_d/2T_d & (2.5T_d \le T) \end{bmatrix}$$

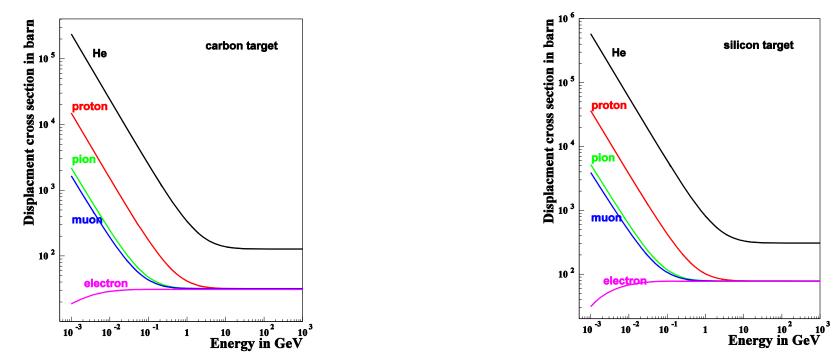
where E_d is "damage" energy available to generate atomic displacements by elastic collisions. T_d is irregular function of atomic number (~40 eV). At recoil energies above $2.5T_d$ the damage function, v(T), reveals some growth with T.


The *displacement efficiency*, **k(T)**, is introduced as a result of simulation studies on evolution of atomic displacement cascades [J. Nucl. Math. **276** (2000) 22]. Weak dependence on target material and temperature.

AHIPA Workshop, Fermilab, October 19-21, 2009

DPA Model in MARS15 (3)

K (T) by R.E. Stoller, J. Nucl. Mat., 276 (2000) 22. Curve by G.I. Smirnov.


For electromagnetic elastic (Coulomb) scattering, Rutherford cross section with Mott corrections and nuclear form factors are used.

AHIPA Workshop, Fermilab, October 19-21, 2009

DPA - N.V. Mokhov

DPA Model in MARS15 (4)

Displacement cross section due to Coulomb scatternig

All products of elastic and inelastic nuclear interactions as well as Coulomb elastic scattering (NIEL) of transported charged particles (hadrons, electrons, muons and heavy ions) from 1 keV to 10 TeV contribute to DPA in MARS15 model.

Other DPA-Capable Codes

- 1. SRIM/TRIM: Kinchin-Pease model for quick DPA calculations
- 2. PHITS: Lindhard-Robinson model in full Monte-Carlo
- 3. MCNPX: uses damage cross-sections (Monroe Wechsler and Marvin Barnett) as flux multipliers to obtain DPA

DPA Calculation Comparison: 1-GeV p onto 3-mm Iron

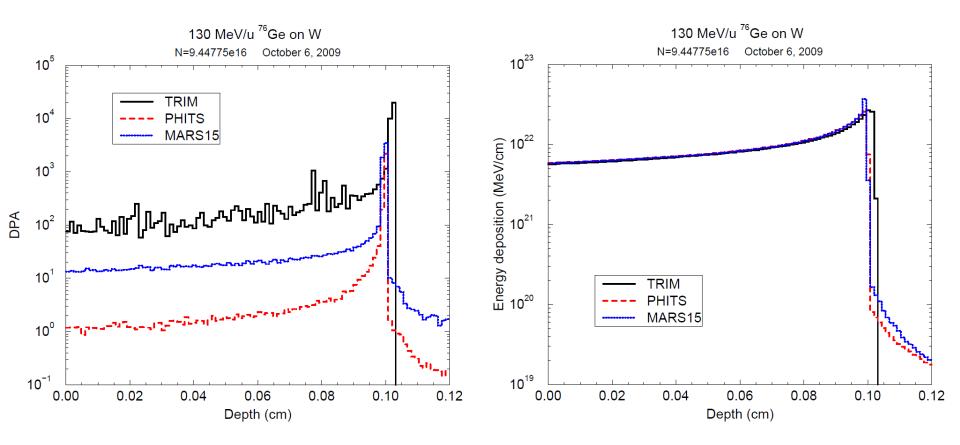
Code	SRIM*	PHITS*	MCNPX*	MARS15
DPA/pot	1.18e-22	2.96e-21	3.35e-21	8.73e-21

Beam area: 1 cm². (*) Courtesy Susana Reyes

MARS15: Physics process contribution (%)

Nucl. Inel.	Nucl. Elastic	EM elastic	L.E. neutrons	e±
75.5	16	2.75	5.5	0.25

DPA Comparison: 0.32-GeV/u ²³⁸U onto 1-mm Be


Code	SRIM*	PHITS*	MARS15
DPA/pot	2.97e-20	5.02e-22	2.13e-20

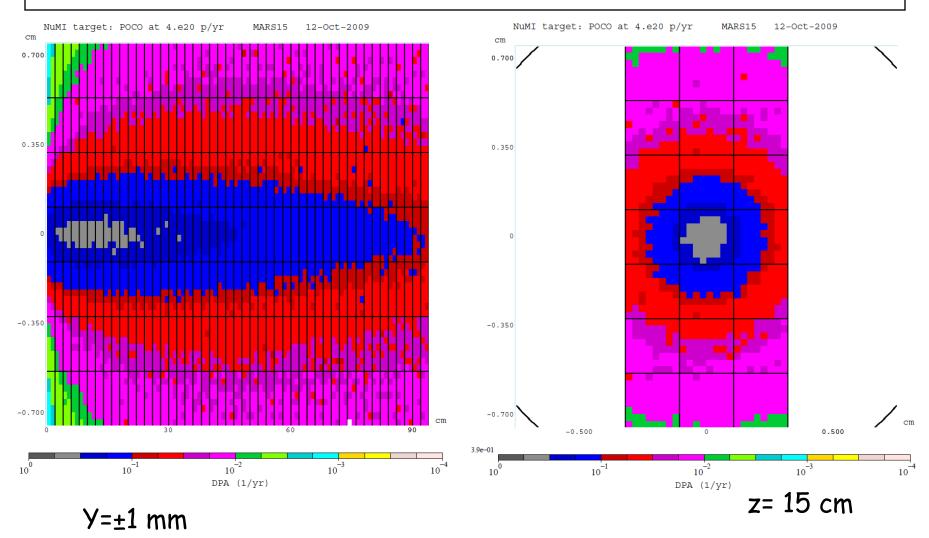
Beam area: 9 cm². (*) Courtesy Susana Reyes

MARS15: Physics process contribution (%)

Nucl. Inel.	EM elastic	L.E. neutrons	e±
0.3	99.06	0.02	0.62

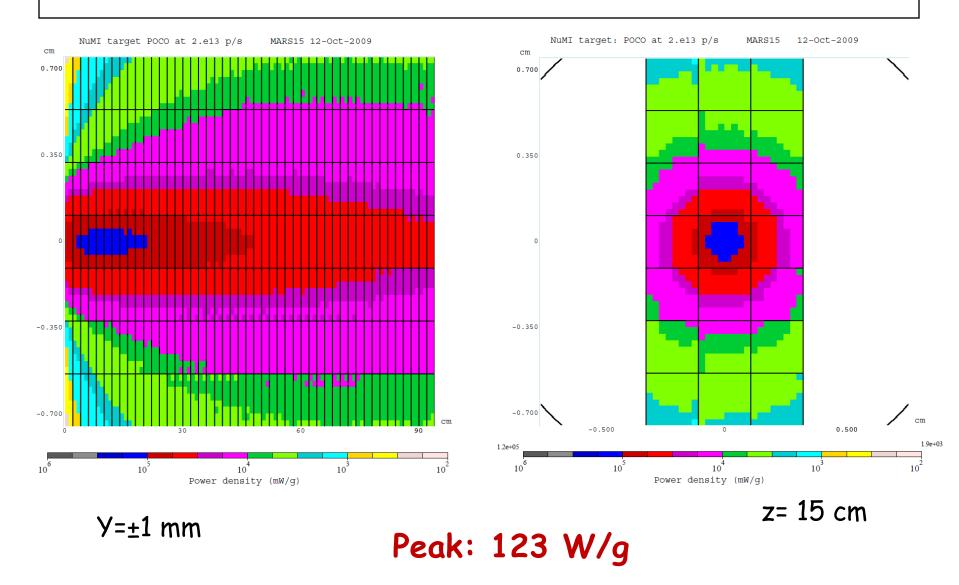
DPA & ED Comparison: 130 MeV/u ⁷⁶Ge on W

Pencil beam, uniform in R=0.03568 cm disc. Target W_{nat} , cylinder with R=0.03568 cm, L=0.12 cm


TRIM and PHITS results: Courtesy Yosuke Iwamoto

NuMI Target NuMI Graphite target: 47 x (1.5x0.64x2 cm) MARS15 August 2009 cm 120-GeV proton beam $\sigma_x = \sigma_y = 1.1 \text{ mm}$ 0.500 2e13 p/s × 2e7 s/yr = 4e20 p/yr Target: POCO Graphite, 1.78 gcc 47 × (15 × 6.4 × 20 mm) -0.500 -1-30 60 90 120 GeV proton beam: sigma x = sigma y = 1.1 mm, 2.e13 p/s

Aspect Ratio: X:Z = 1:47.0

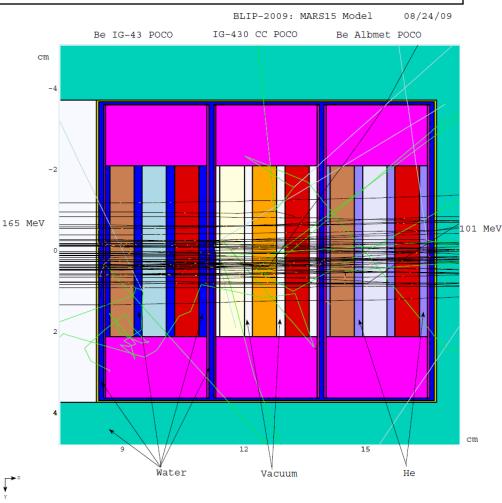

cm

NuMI Target: DPA

Peak: 0.45 DPA/yr

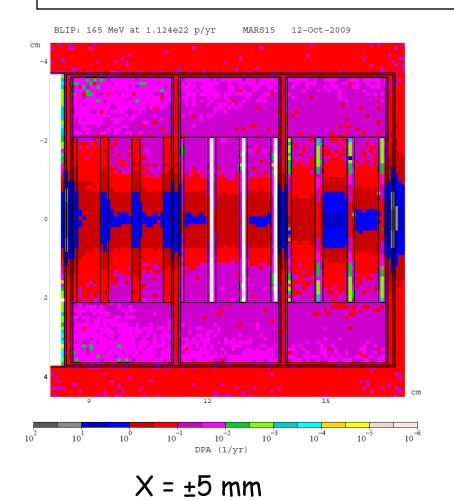
NuMI Target: Power Density

BLIP Target

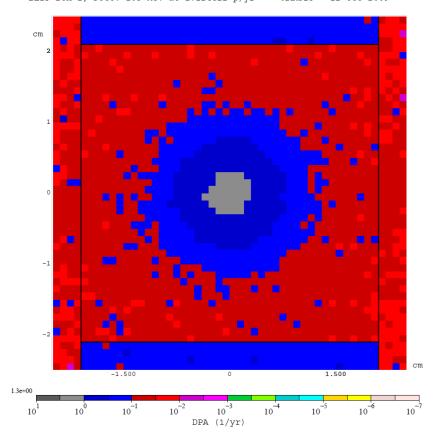

165-MeV proton beam to get 101 MeV downstream $\sigma_x = \sigma_y = 4.233$ mm

90µA: 5.62e14 p/s × 2e7 s/yr = 1.124e22 p/yr

Nine 6-mm thick samples, 3 per box

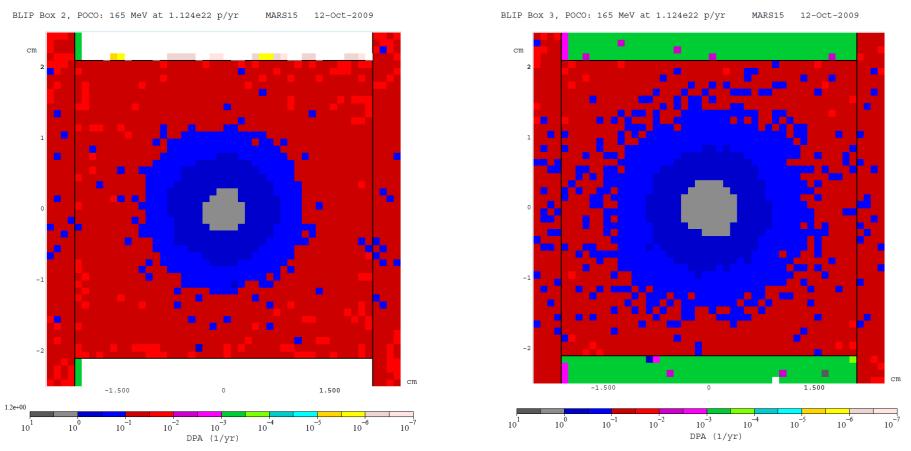

<u>First run</u>

Box-1: Be + IG-43 + POCO (Water) Box-2: IG-430 + CC + POCO (Vacuum) Box-3: Be + Albmet +POCO (He)



Aspect Ratio: Y:Z = 1:1.0

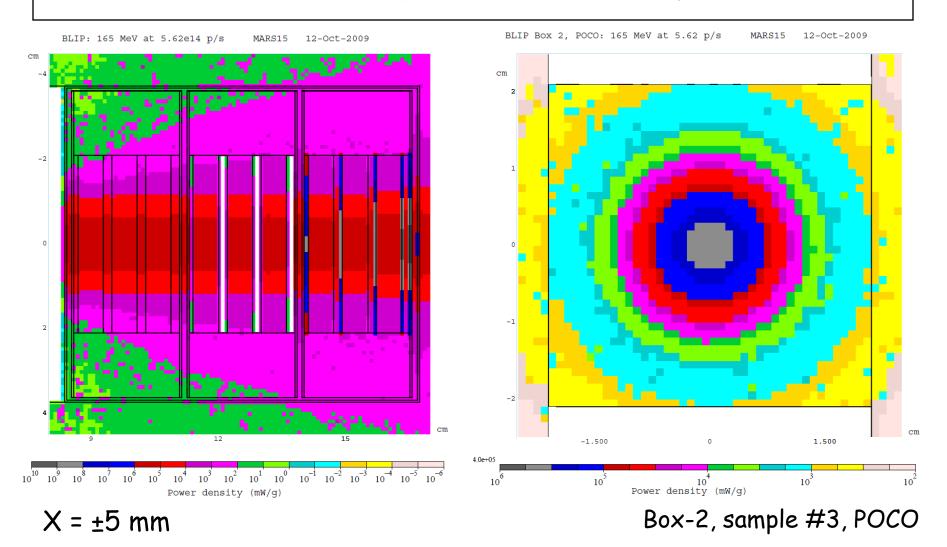
BLIP Target: DPA



BLIP Box 1, POCO: 165 MeV at 1.124e22 p/yr MARS15 12-Oct-2009

Box-1, sample 3

BLIP Target: DPA (boxes 2 and 3)


Box-2, sample 3

Box-3, sample 3

Peaks in POCO graphite (3d sample in each box): 1.37, 1.41 and 1.55 DPA/yr, respectively

DPA - N.V. Mokhov

BLIP Target: Power Density

Peaks in POCO: 393, 401, 404 W/g

DPA - N.V. Mokhov

DPA Composition and BLIP for NuMI/LBNE

Physics process contribution (%) at beam axis: z=15 cm (NuMI) and Box 2 POCO graphite (BLIP)

Target	Nuclear	EM elastic	L.E. neutrons	e±
NuMI	50.8	43.3	1.5	4.4
BLIP	43.5	53	3.5	0.02

Target	E _p (GeV)	Beam σ (mm)	N _p (1/yr)	DPA (1/yr)
NuMI/LBNE	120	1.1	4.0e20	0.45
BLIP	0.165	4.23	1.124e22	1.5

Earlier obtained 0.2-DPA damage limit for carbon materials of interest for 0.7-MW LBNE can be achieved at BLIP over 7 weeks

Summary

• Radiation damage measured as a function of DPA is one of the critical issues for high-intensity beams, especially for heavy ions.

• DPA model in MARS15 has recently been extended to include all products of elastic and inelastic nuclear interactions as well as Coulomb elastic scattering of transported charged particles (hadrons, electrons, muons and heavy ions) from 1 keV to 10 TeV. Some work is still needed for low-energy neutron-dominated cases.

- Joint efforts with material experts are needed to advance the field.
- Tests with proton and heavy-ion beams are absolutely essential.

• BLIP tests with 0.165-GeV protons (planned for next year) will allow to benchmark the DPA model and provide crucial information for 0.7-MW 120-GeV LBNE target.