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Main Phenomena Limiting Bunch Compression  
 Longitudinal instability 
 Non-linearity of compressing RF fields 
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Criterion of Longitudinal Beam Stability  
 For continuous beam  

 Equation of motion 
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 It results in the dispersion equation 
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Where we normalized the distribution function width to 1 
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 At the stability boundary 0)Im(   or 0)Im( y  
 Thus, the stability boundary is characterized by the distribution 

function shape and one parameter 
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Stability Criterion and Growth Rate 
 Finally, stability boundary is  
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 For “rectangular” distribution there is  
no significant difference in stability  
thresholds above and below transition  

 In practice  
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 Longitudinal injection painting  

creates truncated tail 
Stability condition can be  
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Longitudinal Impedance 
 Longitudinal impedance has three 

major contributions 
 Space charge  

 For round beam & vacuum 
chamber with radius a 
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 Effect of RF cavities, vacuum chamber discontinues, etc. can be 
controlled by machine design and dampers (f < 100 MHz) 

 Space charge contribution does not depend on frequency and 
dominates at all frequencies if an appropriate attention was paid to 
the vacuum chamber electrodynamics and E ≤ 20 GeV 
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      Copper chamber, f0 = 1.13 MHz, a = 4.8 cm, 

E=8 GeV 
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Simple Stability Criterion 
 At high frequencies,   sn ppn   /0 , the continuous beam theory 

can be used for bunched beam  
 We assume  

 The space charge impedance dominates ( < 20) 
 Before compression the bunch has uniform density and length Lb  
 Conservation of longitudinal impedance:  

constLbp   - before and after compression 

  Then     1
06.1

ln232 








a

L
NLr

finbp

bp

  

 Let’s rewrite it for beam power 
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 Very steep dependence on beam 
energy 

 For 8 GeV and above an operation 
well above transition maximizes  
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Dependence of sllip-factor  on tune 
in the smooth focosing approximation 
for 8 GeV beam
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Dependence of Maximum Power on Parameters 
 Assume  

 Operation well above transition 
 Small tune 
 Large dispersion reduces the space charge tune shift 

 Slip-factor (momentum compaction) increase is limited by the 

horizontal beam size in dipoles ,
00 Rp

x
R
D




  

 Momentum spread is limited by machine chromaticity 
 For rough estimate it yields: 
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What RCS can do? 
 340 kW with 3 turn injection from RCS to the compressor ring at 8 

GeV 
 Compressor ring length = 1/3 of RCS 
 2 ns single bunch as required for muon collider  

 1 MW will require  
 3 mA current from CW linac  

 6 MV installed CW RF 
 Or Transition to pulsed linac 
 Or Combination of CW and pulsed RF 

 20 Hz repetition rate  
 tripling RCS RF power 
 doubling RCS RF voltage 
 Foil is OK 

 Pulsed linac of ICD-I at 15 Hz will result approximately the same 
power 

 Pulsed linac of ICD-2 can achieve 1 MW with laser injection only 
 Thin flat stream of liquid Li requires more insight 
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Numerical example for “ultimate” 4 MW ring 
 Maximum possible slip factor 

 Its value is limited by beam size at high dispersion regions 
 4 T superferic dipoles 
 2T at beam boundary for quadrupoles 
 Racetrack with minimum reasonable length of straight lines 

Ek=12 GeV,   C=208 m 
=0.0957,   =0.090 
P=4 MW,     Np=1.4·1014 
x,y=4.42/4.42 

 x,y=0.17/0.22 
       (0.366 for D=0) 
 
                                                        4 for n_rms=200/6 mm mrad 
p/p=0.025, 
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Major parameters of longitudinal dynamics 
Compressed beam 

Desired:p=0.01, s=60 cm 
RF voltage: V=3 MV (q=1)  
Bunch field: EmaxC = 350 kV 
Rotation time: 136 turns ( 1/(4s) ) 
Bucket height: p/p=0.041 
Peak beam current: 4.4 kA 
Number of Cavities = 5  
Per cavity: R/Q=25 , Q=350, Pgen=20 MV  

Injected beam 
inj=Lb/C=0.22    Peak beam current=150 A 
Injection time: 1800 turns  

for 80 mA peak linac current (18 mA average) 
 Initial momentum distribution assumed to be close to Gaussian one 

Stability margin ~ 3 (pinj=5.3·10-4 requires linac beam debunching) 
    Zn/nallowed=14  (for Gaussian distribution) 
    Zn/nSpaceCharge=5   
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Simulations of injection and bunch rotation 
 

Injected: 
p5.3·10-4,  
inj=Lb/C=0.22 

 
After rotation:
p0.01,  
s100 cm 
 
 
 
 
 
 

Nonlinearity of RF wave form does not make a major contribution 
Further reduction of bunch length will reduce the stability margin to ~1 
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Transverse stability 
 Assume  

 resistive wall makes major contribution (Cu, 2h=6 cm) 
Eigen-values 
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For continuous beam        For compressed beam 

 Transverse damper is required during injection and bunch 
compression 
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Conclusions 
 ICD-2 can deliver ~340 kW at 10 Hz with required bunch length 
 It looks feasible to achieve 4 MW at 15 Hz with 12 GeV beam 
 It requires  

 12 GeV linac with large beam current from linac (~30-100 mA) 
which cannot be supported CW linac of ICD-2 

 Or synchrotron with ~20 GeV energy 


