

1

Accumulation and Bunch Rotation Schemes

Chuck Ankenbrandt Muons, Inc. October 20, 2009

- Some people are so creative that they are able to bring different crazy ideas to every gathering.
- I'll give (a new version of) the same crazy talk.
- It seems to be gaining acceptance...
 - (by sane people?)
- Since many of you have heard it before, I'll try to
 - be brief, and
 - emphasize what's new.
- (Next slides show title pages of previous talks.)

Project X and the Fermilab Muon Collider

Chuck Ankenbrandt Muons, Inc. June 11, 2009

Project X as a Proton Driver

Chuck Ankenbrandt Muons, Inc. and Fermilab December 9, 2008

Comparison of Proton Driver Schemes For

Muon Collider and Neutrino Factory

(There is a writeup in the HB2008 proceedings)

Chuck Ankenbrandt^{1,2} and Rol Johnson¹ Muons, Inc¹ and Fermilab² August 26, 2008

- Two customers: neutrino factory and muon collider
- Two configurations: IC1 and IC2
- Question: What to add to the two configurations to serve the two customers.
- It will be nice if there is one solution, not four.
- Whatever is built initially should be directly useful for the MC/NF upgrade without major modifications.
- So, how can Project X be used to drive a NF/MC?

- IC1 has an 8-GeV pulsed linac.
- IC2 has a 2.x-GeV CW linac.
- The IC2 linac has to be augmented to feed the MI.
 - Either an RCS from 2 to 8 GeV to MI via Recycler,
 - or a pulsed (?) linac from 2 to ?? GeV to MI directly.
- The latter device would be more useful for MC/NF.
- The IC2 hi-energy linac should be "pulsed" in a special way: the linac should "think" it is CW.
- Question: to what energy should the IC2 linac go?
 - Roland Garoby thinks 5 GeV is enough for CERN neutrino factory based on SPL linac.
 - Maybe we'll need more for MC?

ISS Requirements (Feb. 3, 2008) 莽

_	ione 2. Troton onverrequirements.				
	Parameter	Value			
_	Average beam power (MW)	4			
accel	Pulse repetition frequency (Hz)	50			
	Proton energy (GeV)	10 ± 5			
	Proton rms bunch length (ns)	2 ± 1			
	No. of proton bunches 150 or 250 Hz	3 or 5			
	Sequential extraction delay (µs)	≥ 17			
	Pulse duration, liquid-Hg target (µs)	≤ 40			
_	Pulse duration, solid target (ms)	≥ 20			

Table 2. Proton driver requirements.

Muons, Inc. Interesting footnote in ISS report

¹The use of multi-bunch trains at 50 Hz is a change made during the study from the original single, 15-Hz train. The change was made to ease the production of the 2 ± 1 ns (rms) proton bunches, and to reduce the heavy beam loading in the μ^{\pm} accelerators.

Muon Collider Proton Driver Requirements

Andreas Jansson Fermilab

Chuck Ankenbrandt

AHIPA2009 A. Jansson 10

Muon Collider Parameters

	Low ε (Johnson)	Med ɛ (Alexahin)	High ɛ (Palmer)	
CM Energy	1.5	1.5	1.5	TeV
Luminosity	2.7	1	1	10 ³⁴ cm ² /s
Muons/bunch	0.1 *10	1	2	1012
Ring circumference	2.3	3	8.1	km
$\beta^* = \sigma_z$	5	10	10	mm
dp/p (rms)	1.0	0.1	0.1	%
Ring depth	35	13	135	m
Muon survival	30	4	7	%
ε _T	2.1	12	25	π mm mrad
ε	370,000	72,000	72,000	π mm mrad
PD Rep rate	65	24	12	Hz
PD Power	≈4	≈6	≈4	MW R. Palmer, LEM
6/ සැක්කළ r 20, 2009 Ch	uck AnkenNtaFrad	tt08, Valencia	AHIPA2009	A. Jansson 11

Packaging (rep rate)

- Bunch rep rates range from 12-65Hz
 - Note that this is not necessarily the same as the proton driver rep rate.
- Flexibility here would be useful, also for operations
 - This can be achieved using one or more intermediate fixed energy rings.

CW linac has more flexibility to change frep.

Conclusions

- A muon collider would likely need ~4MW of proton power
 - Should plan for a further upgrade potential of factor ~2 to cover shortfalls in cooling efficiency and future luminosity upgrades
- Bunch rep rate on target ranges from 12-65 Hz
 - Not necessarily the same as linac rep rate. Flexibility can be achieved with intermediate fixed energy rings.
- Proton driver energy is flexible, but at least at Fermilab 8GeV seems most attractive
 - Need more detailed study of intensity limitations.
 - Need to weigh cost of new 50GeV ring(s) against cost of Project X linac upgrades

Comments on Requirements

- Energy:
 - ISS said 5 < Ep < 15 GeV → 8 GeV is ~ ideal.
 - Nµ/(Np*Ep) peaks around 8 GeV
 - Fermilab has a lot of 8 GeV rings.
- Bunch delivery:
 - Cycle rate of proton accelerator: ISS said 50 Hz
 - Bunches per cycle: ISS said 3 or 5
- The difficulty of the proton driver goes up as the number of proton bunches per second goes down.
 - 150 or 250 bunches per second for NF
 - ~ 15 to 60 for MC
- Making rms bunch lengths of 3 nsec is a LOT easier than 2 nsec and reduces yield only ~5%.

- IC1 has an 8-GeV pulsed linac.
 - Power = Tp*Np/sec = Tp*I*dt*frep
 - Upgrade parameters for 4 MW:
 - Repetition rate: 20 Hz
 - Beam pulse duration: 1.3 msec or 1 msec
 - Average current during pulse: 20 mA or 27 mA
- IC2 has a 2.x-GeV CW linac with <I> = 1 mA.
 - For CW case, dt*frep=1, so Power = Tp*<I>.
 - E.g. 5 MW at 5 GeV.
 - Can't let the duty factor be much less than 1, so stay CW.
 - Ion source delivers 10 mA DC
 - Can chop 90% of beam so linac sees $\langle I \rangle = 1 \text{ mA}$
- Max available beam power of CW linac is higher.

- The RCS has a duty factor of .044, since it injects for 4.4 msec at 10 Hz. It boosts the energy from 2 to 8 GeV, so the power is
 - Power = 8 GeV * 1 mA * .044 = 350 kW.
 - RCS Upgrade to 4 MW looks very difficult.

Desire for performance contingency

- Advocates of low-emittance designs worry that very high intensities per bunch (of protons and/or muons) will not be feasible due to various intensity-dependent effects.
- Advocates of high intensities per bunch worry that very low emittances will not be achievable.
- What if both camps are right!?! Then a facesaving compromise path is needed: Raise the proton beam power (rep rate) if necessary.
 - E.g. 8 MW at 8 GeV from CW linac.

- Two multi-GeV storage rings
 - An accumulator ring
 - A buncher ring
- Question: 8 GeV for IC1, ?? GeV for IC2
- Question: can we get by with only one ring?
- Add trombone plus funnel if necessary to reduce repetition rate of bunch arrivals at the target.
 - This external bunch-combiner might be added as part of what's needed to transform from a neutrino factory to a muon collider facility.

Muons, Inc. **Providing p Bunches for a ν Factory or a μ Collider**

8 GeV LINAC

Essential new idea for IC2

- Issue: with a low-current CW linac, many more turns must be injected into the accumulator ring. The stripper foil sees many more turns passing. A pulsed linac is much better in this regard.
- Solution: make CW linac effectively pulsed:
 - Chop linac beam so beam is there only every tenth turn.
 - (The high-Q linac cavities don't notice the difference.)
 - Add a dipole 2-bump around the foil, oscillating at frev/10, to move the circulating beam away from the foil when the injected beam is off.

Several bunches enter

Bunches exit simultaneously

AHIPA2009

Muons, Inc. A specific hi rep. rate, 8 GeV example

춖

- Use Accumulator(-like) and Debuncher(-like) rings.
 - Acc and Deb are leftovers from Fermilab's Antiproton Source
 - They are not very deep underground; maybe move them to a new tunnel?
- Paint to large (~200 pi) transverse emittances in rings with small circumference to control space charge.
 - Could strip directly into "Accumulator" or do multi-turn transverse stacking from Recycler to "Accumulator".
 - Small circumference means more favorable bunching factor.
 - Scale from space charge tune shift (~0.04) in Recycler ring.
- Use h=12 and h=24 rf to make 12 ~rectangular bunches.
- (Note possible constraints on h_1 , h_2 : Circumference ratio of the two rings, if multiple bunches are transferred)
- Transfer three bunches at a time to the "Debuncher".
- Do a bunch rotation in the "Debuncher".
- Deliver three bunches at a time to the target at 60 Hz.

Muons, Inc. Proton Driver Design Challenges

꿓

- Design of the rings: rf, lattices, etc.
- Multi-turn injection by stripping H⁻
 - ~1000 turns in IC1
 - Even more in IC2
- Intensity-dependent effects
 - Each linac pulse delivers ~ 150 Tp
 - Space charge, electron cloud, instabilities
- Beam delivery to the target
 - Desired rms beam size ~ 5 mm
 - Large transverse emittances to control space charge
 - Small beta function at the target
 - Trombone/funnel design (may be an upgrade path)
- Target and dump design and performance
- What have you?

- Both IC1 and IC2 might be usable for MC/NF.
- The CW linac of IC2 should be extended to >~ 5 GeV.
- One or two storage rings at the linac energy can provide the desired bunch structures with some flexibility in rep rates.
- For IC2, the beam should be chopped, and an AC dipole two-bump around the foil should be added.
- An external combiner can reduce the rep rate of bunches at the pion production target if necessary.
- There are many design issues to be addressed.

Backup slides

October 20, 2009

Muons, I'Scaling of Muon Collider Requirements

$$\mathcal{L} \sim \frac{R_b N_{\mu}^2}{\varepsilon_{\perp} \beta^*} f(\sigma_z / \beta^*) \sim \frac{R_b N_{\mu} \xi}{\beta^*} f(\sigma_z / \beta^*) \qquad \xi = \frac{r_{\mu} N_{\mu}}{4\pi \varepsilon_{\perp}} \leq \xi_{\max}$$

The luminosity of a muon collider is given by the product of: the integrated luminosity per muon bunch pair injected, times the rep. rate R_b of injecting bunch pairs into the collider.

Designers often assume (optimistically?) that the muon bunches can be made bright enough to reach the beam-beam limit. Then:

$$\mathcal{L} \propto \frac{R_b \xi_{\max}^2 \varepsilon_{\perp}}{\beta^*} f(\sigma_z / \beta^*)$$

and for given luminosity, energy, and beam-beam tune shift:1) the rep. rate scales inversely with the trans. emittance;

2) the proton beam power is independent of the trans. emittance.

MuorScaling of PD params with collider energy

- For given muon bunch parameters, the luminosity of an optimistically designed collider tends to scale like s, the square of the CM energy.
 - There's one factor of energy in the non-normalized emittance;
 - The bunch length can also be reduced as the energy is raised, allowing smaller β^* .
- The cross sections for pointlike processes scale as 1/s.
- As a result, the event rates depend only weakly on s.
- Therefore, the requirements on the front end of an optimistically designed muon collider are approximately energy-independent.

Muons, Inc. Space-charge tune shift scaling

• Scale from incoherent tune shift of 0.04 in Recycler

$$\Delta \nu \sim \frac{N_{tot}}{\varepsilon_n \beta \gamma^2 B}$$

- The energy (8 GeV) and the total number of protons are the same in the Recycler and the Debuncher.
- The transverse stacking into the Debuncher raises the transverse emittances by a factor of eight.
- The bunching factor goes down (worse) by a factor of nine.

$$B_{ar} = \sqrt{2\pi} \frac{\sigma_l}{C} \qquad B_{br} = \frac{1}{2} \frac{\lambda_{rf}}{C} \qquad \qquad \frac{B_{ar}}{B_{br}} = \sqrt{8\pi} \frac{\sigma_l}{\lambda_{rf}}$$