Accelerator Test Facility for Muon Collider and Neutrino Factory R&D

Vladimir Shiltsev/Fermilab

AHIPA, Oct 20,2009 Fermilab S.Geer, R.Abrams, E.Ramberg D.Neuffer, H.White, M.Syphers

with input from:

Muon Complex Evolution: P5 Vision

Bigger Picture and Need of Facilities

- Main steps, milestones and \$\$ (view of optimist):
 - Now (Dec'09) DOE Review of Nat'l MAP proposal
 Decision to support 5 year plan
 - 5 year plan 2010-2014 (8-10M\$→ 16-20M\$/yr)
 - MC Feasibility Study Report, MICE, IDS-NF, 6D section
 - decision to proceed with the next 5 year plan
 - Next 5-years 2015-2019 (~30M\$ → 40-60M\$/yr)
 - CDR (TDR?) work, 6-D cooling section beam test
 - start of construction of Pr-X based Muon Test Facility
 - 2019-2024 (60M\$ → 100M\$/yr)
 - MTF demo of frontend+ long 6-D cooling channel, TDR
 Decision to build MC

Facilities Needed : Now and Then

- MTA (now 2014+)
 - Tests of components, RF studies
- MICE (now 2014)
 - Demo of 4D cooling, wedge tests

MuCool Test Area

Transverse (4D) Ionization Cooling to be demonstrated by 2011 at RAL Muon Ionization Cooling Experiement **ISIS** accelerator

MICE experimental hall

MICE Hal as of Mar'09

Requirements for the New Facility

- Appropriate timeline:
 - available sometime after 2012

- when 6D cooling technology proven
- low intensity beam experiments till ~2018
 - demo of 6D cooling, get prepared for Pr-X beam
- upgrade/expand to take med-high intensity Project-X beam and do R&D till ~2024
- operation as MC or NF Front End >2025
- Technical:
 - i) space; ii) beam parameters; iii) cost

Scale of The MC/NF Front-End

See D.Neuffer et al

- Latest scheme: about 100 m for target+drift+buncher+rotator
- About 200 m for the previous-to-last scheme

Fermilab

Scale of The 6DICE Channel

 See,e.g., Yu.Alexahin et al

> 20-fold 6D emittance after 120 m
> 60 m → x5 or ~1.7 per plane

Possibilities for the New Facility

- MICE
- MTA Hall
 - When 6D cooling technology proven
- Synergy with mu2e
 - Demo of 6D cooling
 - Get prepared for Project-X beam
- KTeV Hall
 - Be able to get med intensity beam

Upstream Beamline: ¹⁴ in place

Downstream beamline: in place

Muon R&D 09/01/09 - Shiltsev

Instrumentation in place: Beam monitors Trigger/rate scintillators CKov, TOF0&1, KL

Beam Cooling Experiment in MTA Hall

- → some 1e-6 muon per 400MeV/c proton
- → huge proton flux
- → hall is small
- → will interfere with RF tests

Beamlet-type experiment -considered by A.Jansson in 2007

Muon R&D 09/01/09 - Shiltsev

Mu_{2e} Experiment → 8 GeV Debuncher \rightarrow 30-40 ns p-bunch → 1.7 us revol freq → 10-100K turns extraction (<200ms) **→ 10^12** \rightarrow hit the mu2e target \rightarrow get forward muons for 6DICE → muons guaranteed →green field

 $\rightarrow \text{ wrong beam structure} \rightarrow \text{Pr-X incompatible}$

KTeV Hall and Target Area

KTeV Hall

- Three areas: 35m x 4x3m; 40 m x7x6 m; 45m x17x12m
- Control room and PS areas; 25-ton crane, water, lot of power available

Availability

Calendar Year		2010			2011			2012	2013	
Tevatron Collider		CDF & DZero			CDF & DZero		PEN			OPEN
Neutrino Program	в	MiniBooNE		MiniBooNE					OPEN	
		OPEN			OPEN	Micro	BooNE		Mi	croBooNE
	мі	MINOS		MINOS					OPEN	
		MINERVA		MINERvA					MINERvA	
		ArgoNeuT								
							NOVA	•		NOvA
SY 120	MT	Test Beam		Test Beam					Т	est Beam
	MC	OPEN OPEN							OPEN	
	NN4	E-906/Drell-Yan			E-906/Drell-Yan				E-90)6/Drell-Yan

Upgrade/Transition Strategy

- Start with 120 GeV beam from MI
- Build 8 GeV beam line (MI \rightarrow KTeV hall)
- Get Pr-X 8 GeV beam at low rep rate
- Build buncher ring (8 GeV)
- Build Muon R&D/Front-end test facility
- Transform it to full blown MC or NF front end

Woodland Hills

Pointer 41°50'36.14" N 88°14'30.02" W elev 742 ft

then proceed with MC or NF

© 2008 Europa Technologies © 2008 Tele <u>Atlas</u>

Streaming ||||||||| 100%

Google

N

Summary

- Project-X will provide unprecedented flux of protons
 - Even before upgrades at 8 GeV
 - Even more after upgrades (TBD)
- The needs of Muon Accelerator R&D call for reliable source of muons and facility to carry out tests of:
 - Low-medium 6D Ioniz cooling experiment
 - Front-end facility
 - Full intensity research
- KTeV Hall looks as a promising possibility
 - Fully available after 2012m, spacious, target ares, power, water, etc
 - Has only 120 GeV beam line → will need 8 GeV at Stage II
 - Can be extended to full blown Front-End Area

Some BACKUP SLIDES

Muon Collider Parameters

CM Energy	1.5	4	TeV
Luminosity	1	4	10 ³⁴ cm ⁻² s ⁻¹
Muons/bunch	2	2	10 ¹²
Ring circumf.	3	8.1	km
Beta at IP $\beta^* = \sigma_z$	10	3	mm
dp/p (rms)	0.1	0.12	%
Ring depth*	13	135	m
PD Rep rate	12	6	Hz
PD Power	≈4	≈2	MW
Transv.emm. ε _τ	25	25	π mm mrad
Long. emm. ϵ_L	72,000	72,000	π mm mrad

* depth for v radiation keeps off site dose <1 mrem/yr

🛟 Fermilab

Muon Collider Scheme

