Indian Nuclear Power Programme & its linkage to ADS

S. Banerjee Bhabha Atomic Research Centre Mumbai, India

division of the same diverse where

Contents

- 1. Indian nuclear power programmepresent & future.
- 2. Nuclear fuel-cycle aspects.
- 3. Gains of Sub-critical reactor operation as ADS.
- 4. ADS for waste incineration & thorium utilization as nuclear fuel.
- 5. Indian efforts on ADS R&D-Roadmap, ongoing & future plans.

Elements of Indian nuclear programme

- Indigenous development of a Reactor Technology (Pressurized Heavy Water Reactor- <u>PHWR</u>)
 - Total technology development
 - Based on indigenous resources
- Adopting Closed-Fuel Cycle
 - Best use of fissile & fertile materials
 - Reduction of the waste burden
- Three-Stage Programme
 - Modest uranium reserve
 - Utilization of large thorium reserve

Salient Features of PHWR

- Natural Uranium Fuel
 - Low burn up
 - Efficient use of ²³⁵U per ton of U mined
- Heavy Water moderator and coolant
 - Development of heavy water technology
 - Tritium management
- On-power fuelling
 - Fuelling machine development
 - Daily entry into reactor core
- Neutron economy
 - Excellent physics design
 - Complex engineering
 - Careful choice of in-core materials
 - Neutrons: best utilized in fission & conversion
- Large pressure vessel not required
 - Distributed pressure boundaries

Challenges faced in PHWR programme – and successfully met

- Indigenous capability in fabrication of fuel and structural materials:
 - From low grade resources to finished fuel
 - Perfection in making in-core structural components
- Mastering heavy water technology:
 - Ammonia and H₂S exchange processes developed
 - Energy economy achieved
 - Production capacity consistent with power programme
- Sophisticated equipment development:
 - Fuelling machines, Steam Generators etc.
 - Technology transfer to Indian Industry
- Computerized reactor control system.
- Repair/refurbishment/life estimation & extension:
 - In-service inspection
- Improved safety features.
- Operating experience:
 - Record capacity utilization
- Construction time:
 - Reduced to 4¹/₂ years

Back end of fuel cycle

India's option: Closed Fuel Cycle

- Reprocessing, conditioning & recycling.
- Supply of fuel to fast breeder.
- Regular operation of vitrification plant.
- Minimization of waste burden.

Thrust Areas of Development:

Multi-component reprocessing of Thoria-based fuels.
 (U, Pu &Th streams)

Reprocessing Plant-Kalpakkam

Waste immobilizationvitrification plant at BARC

Three-Stage Indian Nuclear Programme

Three Stage Nuclear Power Programme- Present Status

Globallv Advanced

Technology

Stage - I PHWRs

- 15 Operating
- 3 Under construction
- Several others planned
- Scaling to 700 MWe
- Gestation period has been reduced
- POWER POTENTIAL ≅ 10,000 MWe

LWRs

- 2 BWRs Operating
- 2 VVERs under construction

Stage - II Fast Breeder Reactors

- 40 MWth FBTR -Operating since 1985, Technology Objectives realized.
- 500 MWe PFBR-Under Construction

 POWER POTENTIAL ≅ 530,000 MWe

Stage - III Thorium Based Reactors

- 30 kWth KAMINI- Operating
- 300 MWe AHWR-Under Development

POWER POTENTIAL IS VERY LARGE

Availability of ADS can enable early introduction of Thorium and enhance capacity growth rate.

Fast Breeder Reactors

 20 years experience in operating Fast Breeder Test Reactor (FBTR):

Successful operation with indigenously developed unique mixed carbide (UC + PuC) fuel in FBTR -Burn-up exceeded 150,000 MWd/t without a single fuel pin failure .

- Maturity in molten sodium technology.
- The FBTR fuel discharged at 100,000 MWd/t & successfully reprocessed: First time that the Plutonium-rich carbide fuel has been reprocessed anywhere in the world.
- Construction of prototype 500 MWe FBR started in October 2004.

Indian Nuclear Power Programme - 2020

	REACTOR TYPE AND CAPACITIES	CAPACITY (MWe)	CUMULATIVE CAPACITY (MWe)
>	17 reactors at 6 sites in operation Tarapur, Rawatbhata, Kalpakkam, Narora, Kakrapar and Kaiga	4,120	4,120
	3 PHWRs under construction at Kaiga 4 (220 MWe), RAPP-5&6(2x220 MWe)	660	4,780
	2 LWRs under construction at Kudankulam(2x1000 MWe)	2,000	6,780
	PFBR under construction at Kalpakkam (1 X 500 MWe)	500	7,280
>	Projects planned till 2020 PHWRs(8x700 MWe), FBRs(4x500 MW AHWR(1x300 MWe)	7,900 /e),	15,180
	Additional LWRs through internationa cooperation	~ 20000	~ 35000

Growth of nuclear power through Fast Breeder Reactors (FBR)

- Initially supported by Pu from PHWR spent fuel.
- Development of metallic fuel for improved breeding ratio (reduced fuel doubling time).
- Faster capacity growth in power generation from FBRs.
- Increased unit size up to 1000 MWe.

World Thorium Resources

Country Australia India Norway USA Canada S. Africa **Brazil** Malaysia **Other Countries** World total

Reserves (tons) 300,000 290,000 170,000 160,000 100,000 35,000 16,000 4,500 95,000 1,200,000

Advanced Heavy Water Reactor (AHWR)

- Vertical pressure tube.
- Boiling light water cooled.
- Heavy water moderated.
- Fuelled by ²³³U-Th MOX and Pu-Th MOX.

Major Design Objectives

- Power output 300 MWe with 500 m³/d of desalinated water.
- Core heat removal by natural circulation.
- A large fraction (65%) of power from thorium.
- Extensive deployment of passive safety features – 3 days grace period, and no need for planning offsite emergency measures.
- Design life of 100 years.
- Easily replaceable coolant channels.

Technology demonstration for large-scale thorium utilization

- Currently under Pre-Licensing Safety Appraisal by AERB.
- International recognition as an innovative design.

Thorium fuel breeder reactor

- Fuel doubling time depends on: surplus neutrons per fission in the reactor system.
- Also ensure safe reactor operation.
- ²³⁹Pu-fuel : surplus neutrons only in fast spectrum.
- ²³³U-fuel : similar neutron surpluses in fast & thermal spectra.

Fuel Breeding in Critical vs. sub-critical reactors (cases of ²³⁸U-Pu & ²³²Th-U)

Breeding condition, $v/k-2(1+\alpha)-v_c \ge 0$							
Fissile isotope	Neutron spectrum	Neutrons per fission (v)	Alfa (α)= capture/ fission ratio	Surplus Neutrons for k = 1; v _c = 0.25	Neutron balance for k = 0.95; v _c = 0.25	Percentage improvement with k=0.95	Remark on breeding potential
Pu-239	Thermal	2.871	0.36	-0.10	0.05	150%	Poor breeding- with & without ADS.
do	Fast	2.98	0.14	0.45	0.61	35%	Can breed without ADS
U-233	Thermal	2.492	0.09	0.06	0.19	216%	Poor k=1 breeding; ADS helps
do	Fast	2.492	0.093	0.06	0.19	216%	Poor k=1 breeding; ADS helps

Nuclear waste disposal by Transmutation mulation of spent

- Accumulation of spent fuel: a global issue.
- Spent fuel requires > 100,000 years to decay.
- Transuranic elements (TRUs: Np, Pu, Am & Cm) + a few long-lived fission products (FPs): decay very slowly.
- Bulk of FPs decay to safe disposal levels in 3-5 centuries.
- If TRUs transmuted into FPs by fission: bulk of FPs decay very fast.

Transmutation of TRUs by fission

- Isotopes of transuranic element (TRU)
 : fissionable in fast neutron spectrum.
- TRU burner reactor needs fertile-free fuel feed.
- Difficult power control system of critical reactor due to:
 - Reduced delayed neutron fraction (factor called β_{eff}) giving lower safety margin to *prompt* criticality.
 - Safety parameters: (1) Doppler coefficient, (2) reactivity temperature coefficient, and (3) void fraction- all would not be benign in TRU incinerating *critical* fast reactor.
- There is strong case to operate such reactors in sub-critical mode- like <u>ADS</u>, for ensuring deterministic nuclear safety under all conditions.

Basic operating principles in conventional & subcritical reactors {=Energy Amplifier}

sub-critical reactors

conventional reactors

Conventional reactors work with chain reaction by self generated neutrons.

Energy Amplifieri.e. Accelerator Driven Sub-critical Reactor, works with externally generated neutrons: giving better neutron economy and safety in operations.

Schematic of ADS- energy balance

ADS Reactor : start up & operation studies (for 200 MWe)

Heavy Water reactor (HWR)

- As ADS (10 MW beam): with thorium solid fuel: 20 years to reach full power.
- If reactor start with natural U fuel: self-sustainable power operation with 30 MW proton beam from day one. Then, gradually replace U with Th.
- Beam power can be 15 MW when spent fuel reprocessed and recovered ²³³U is recycled.
- Otherwise, self-sustainable power operation @~ 200 Mwe; even for once-through thorium use & no reprocessing to recycle ²³³U.

Molten-salt reactor (MSR)

- As ADS (10 MW beam)- with thorium only fuel salt & online removal of fission products: 5.5 year to reach full power using 10 MW proton beam.
- If reactor start with natural U salt fuel, full power from day one. Then, gradually replace U with Th-salts.
- Thereafter, self-sustainable power operation @~ 200 Mwe even for once-through thorium use & no reprocessing to recycle ²³³U.

Technologies for ADS

- High power proton accelerator: 1 GeV, cw or high duty factor, high current
 - High beam current front-end
 - Superconducting RF cavities
 - RF power systems
- Molten heavy metal spallation target & associated process system.
 - High volumetric beam power density
 - Materials: irradiation and corrosion resistant
- Sub-critical reactor
 - Dedicated TRU transmuter fuel & fuel-cycle
 - Configuration: technology issues
 - Transients & safety studies

Ongoing Indian activities in ADS programme

- Design studies of a 1 GeV, 30 mA proton linac.
- Development of 20 MeV high current proton linac for front-end accelerator of ADS.
- Construction of LBE experimental loop for design validation and materials tests for spallation target module.
- Development of computational tools and data for neutronics of spallation target and coupled sub-critical reactor.
- Experimental validation of reactor physics codes and data with 14-MeV neutrons in subcritical core at PURNIMA labs.
- Design studies for ADS experimental reactor

14 MeV Neutron Generator - Experimental facility

Experiments on physics of ADS and validation of simulations.

>use of 14-MeV neutrons
produced by DC accelerator &
D+T reaction. Also, a 400-keV
RFQ is being built for higher
beam curent.

Simple sub-critical assembly (k_{eff}=0.87) of natural uranium and light water is chosen

Plans for : measurements of flux distribution, flux spectra, total fission power, source multiplication, and degree of sub-criticality will be carried out.

Code Development for High Energy Particle Transport & Nuclear Cross Sections

Programmes carried out so far.....

- Physics Simulation spallation reactions- GeV protons
- Heat dissipation in spallation target /window; neutron production and spectra; different targets
- Comparison of FLUKA and CASCADE
- Compound Nucleus (CN) Reactions- EMPIRE
- Residual Nuclei production
- keV MeV neutrons- measurements at the Pelletron
- Synergy between DAE and universities- BRNS
- Formation of Nuclear Data Coordination Committee NDC@BARC

Design studies: 30-MWt reactor → ADS

One-way coupled ADS- concept

Inner Core: Fast Pb/LBE cooled and MOX (Pu-Th later ²³³U-Th) Outer Core: Thermal, PHWR type, MOX Fuel (²³³U -Th)

1. S.B. Degweker et al. Ann. Nucl. Energy 26, 123 (1999).

2. O.V. Shvedov et al. IAEA-TECDOC 985, D4.1, pp 313-375 (1987).

By using two-energy amplifiers:

Requirement of primary proton beam current can be lowered substantially, such that gain:

 $G_b = G_0 * k_i / (1-k_i)$ is gain in booster, Net neutronic gain $G_n = \frac{G_b \frac{(1-k_i/k_{1^{\infty}})}{(1-k_2)}}{(1-k_2)}$

Driver beam current requirements reduced by factor G_n (1- k_2).

In one-way coupled system, the overall Keff,

 $k_{12} = k_1 \text{ or } k_2 \text{ whichever is larger.}$

Fast booster zone may consume ^{240,242}Pu, Np etc....and <u>thermal</u> region has Th+ ²³³U as fuel.

One-way coupled ADS scheme for Thorium Utilization & Actinides Transmutation

Separator Tank

Mercury Loop

- Simulation of Window/Windowless
 Target
- Velocity field mapping by UVP monitor
- Carry-under studies

Mercury Loop and sub-systems

ADS Windowless Simulation Target

- Two-phase flow studies by Gamma Ray
- Laser-triangulation for free surface measurement
- CFD code validation
- Gas-driven flow studies

LBE Corrosion Loop

- Height ~ 7m
- Flow Rate ~1.7 kg/s
- Temp: 550°C and 450°C
- Velocity in the Samples~0.6 m/s
- Corrosion Tests: Charpy and Tensile after 28
 3000 hrs in the flow

Proton cyclotron Beamline for target studies at VECC, Kolkata (30 MeV Cyclotron)

Windowless liquid-metal spallation target (Presently under studies for feasibility)

Interface from target-coolant to accelerator vacuum is a free surface of the liquid metal. Liquid volume below serves as spallation target.

This is possible due to very low vapour pressure (~ 10^{-4} Torr) of lead and LBE at the operating temperatures of less than ~ 400° C.

Need for a structural, safetyrelated item (window), exposed to peak intensity of particle flux in the spallation zone, is completely eliminated.

Essential features of proton accelerator for ADS

Functional requirements	Design features
Proton accelerator: 1 GeV & ~30 MW beam power.	Requires elaborate radiation & beam safety measures.
High efficiency of conversion from electrical grid into beam power.	Requires superconducting RF cavities to save on dissipation in cavities
High Reliability to achieve less than ~10 beam trips per year.	 Redundancy of systems, Standby modules Relaxed design of system parameters
Beam spill: to be minimized <1 watt beam power loss per meter to reduce activation & allow hands-on maintenance by O&M personnel.	 Beam with low emittance, As large aperture of accelerating structure as possible.

Accelerator Driven System Roadmap with Proton Accelerator Development stages.

Scheme of Proton Linac Development

20-MeV proton linac-LEHIPA

High-energy section for Linac

- Use of multi-cell elliptical superconducting RF cavities: for > 100 MeV (β> 0.42) in high energy section of linac.
- Development of fabricating, processing and RF conditioning of bulk niobium SC cavities.
- Some experience exists in fabrication of QWR/HWR SC cavities for heavy-ion accelerators.
- > Associated R&D progressing at BARC on:
 - Cryogenics technology
 - LHe plants and refrigerators

Indian Institutes & FNAL Collaboration: recent activities

SRF Cavity Forming Tooling development at RRCAT

Forming Process

Formed Niobium Half Cell

SRF cavity: EB welding activities Welding half cells to make dumbell

Setting inside the EBW chamber

Welded dumbell

Electromagnetic Simulation of Single Cell SCRF Cavity

ANS NODAL SOLUTION OCT 9 2007 STEP=1 07:19:49 SUB =1 FREQ=.131E+10 HSUM (AVG) RSYS=0 SMN =.126E-05 SMX =.001713 .126E-03 .382E-03 .762E-03 .001143 .001523 .191E-03 .572E-03 .952E-03 .001333 .001713

Electric field along the axis

Magnetic field along the axis

Bead Pull Measurement Setup for Single-Cell SRF cavity

Wedge Tuner installed around the Helium Vessel

Wedge cavity tuner : required for slow and fast tuning of SRF cavity.

Piezo Sub assembly Outer Wedge Plate sub assembly Sliding Wedge Plate sub assembly Fixed Flat Plate sub assembly

Wedge Tuner Mock up Assembly at BARC

Summary

- Indian objective on nuclear power- sustainable utilization of thorium fuel reserves via 3-stage plan.
- ADS helps in achieving sustainable Th-utilization & eliminate long-lived TRUs.
- Thrust areas in ADS R&D programme identified in a roadmap:
 - > High power superconducting proton Linac.
 - Lead & lead-bismuth liquid metal system- thermal hydraulics
 - > Molten LBE/Lead compatible structural materials.
 - Spallation target neutronics and sub-critical reactor kinetics.
 - > Nuclear data for thorium fuel cycle.
- Ongoing ADS-related R&D activities:
 - > 14-MeV neutron based sub-critical reactor studies.
 - > 20-MeV high-current proton linac.
 - LBE experimental loop.
 - > Fabrication of superconducting RF cavities.

20 MeV Proton beam for ADS experiments in HWR critical facility

High Temperature Reactor

Nuclear energy in hydrogen economy

ADS-demonstration reactor

- Studies made on a design of 30-MWt thermal reactor compatible for ADS demonstration project.
- This ADS configuration is planned for feasibility demonstration at a few MWt fission power level.
- Physics studies are in progress at BARCreactor has pool type core in open tank, light water is moderator & heavy-water makes reflector shield. LEU used as plate type fuel assemblies of uranium silicide (U₃Si₂) dispersed in aluminum matrix.

Work on SRF cavity electromagnetic design

Cavity design work with MSU/FNAL for:

- Benchmarking cavity simulation codes/techniques
- Study of β= 0.8 new cavity geometries with FNAL and comparison of results.

Design simulations of spallation target for ADS

Thermal hydraulics models for flow of spallation target-coolant LBE-

- (a) by buoyancy,
- (b) by gas-injection enhanced flow

Simulation results of proton beam heat deposition rate in lead (Pb) spallation target at different beam energies using FLUKA (CERN) & CASCADE (JINR, Russia) codes.

Nuclear Data Measurements

²³²Th(⁶Li,⁴He) surrogate reaction for ²³³Pa(n,f)

(Experiment at BARC-TIFR Pelletron facility, Mumbai)

