Indian Nuclear Power Programme & its linkage to ADS

S. Banerjee
Bhabha Atomic Research Centre
Mumbai, India
Contents

1. Indian nuclear power programme-present & future.
2. Nuclear fuel-cycle aspects.
3. Gains of Sub-critical reactor operation as ADS.
4. ADS for waste incineration & thorium utilization as nuclear fuel.
5. Indian efforts on ADS R&D-Roadmap, ongoing & future plans.
Elements of Indian nuclear programme

- Indigenous development of a Reactor Technology (Pressurized Heavy Water Reactor- PHWR)
 - Total technology development
 - Based on indigenous resources

- Adopting Closed-Fuel Cycle
 - Best use of fissile & fertile materials
 - Reduction of the waste burden

- Three-Stage Programme
 - Modest uranium reserve
 - Utilization of large thorium reserve
Salient Features of PHWR

- **Natural Uranium Fuel**
 - Low burn up
 - Efficient use of ^{235}U per ton of U mined

- **Heavy Water – moderator and coolant**
 - Development of heavy water technology
 - Tritium management

- **On-power fuelling**
 - Fuelling machine development
 - Daily entry into reactor core

- **Neutron economy**
 - Excellent physics design
 - Complex engineering
 - Careful choice of in-core materials
 - Neutrons: best utilized in fission & conversion

- **Large pressure vessel not required**
 - Distributed pressure boundaries
Challenges faced in PHWR programme – and successfully met

• Indigenous capability in fabrication of fuel and structural materials:
 - From low grade resources to finished fuel
 - Perfection in making in-core structural components
• Mastering heavy water technology:
 - Ammonia and H$_2$S exchange processes developed
 - Energy economy achieved
 - Production capacity consistent with power programme
• Sophisticated equipment development:
 - Fuelling machines, Steam Generators etc.
 - Technology transfer to Indian Industry
• Computerized reactor control system.
• Repair/refurbishment/life estimation & extension:
 - In-service inspection
• Improved safety features.
• Operating experience:
 - Record capacity utilization
• Construction time:
 - Reduced to 4½ years
Back end of fuel cycle

India’s option: Closed Fuel Cycle

• Reprocessing, conditioning & recycling.
• Supply of fuel to fast breeder.
• Regular operation of vitrification plant.
• Minimization of waste burden.

Thrust Areas of Development:

• Multi-component reprocessing of Thoria-based fuels. (U, Pu & Th streams)

Reprocessing Plant-Kalpakkam

Waste immobilization-vitrification plant at BARC
Three-Stage Indian Nuclear Programme

Thorium in the centre stage

Stage 1
- Power generation primarily by PHWR
- Building fissile inventory for stage 2

Stage 2
- Expanding power programme
- Building 233U inventory

Stage 3
- Thorium utilization for Sustainable power programme

PHWR

FBTR

AHWR

U fueled PHWRs

Pu Fueled Fast Breeders

233U Fueled Breeders

Electricity

Dep. U

233U
Three Stage Nuclear Power Programme - Present Status

Stage – I PHWRs
- 15 - Operating
- 3 - Under construction
- Several others planned
- Scaling to 700 MWe
- Gestation period has been reduced
- POWER POTENTIAL ≈ 10,000 MWe

Stage – II
Fast Breeder Reactors
- 40 MWth FBTR - Operating since 1985, Technology Objectives realized.
- 500 MWe PFBR - Under Construction

Stage – III
Thorium Based Reactors
- 30 kWth KAMINI - Operating
- 300 MWe AHWR - Under Development

POWER POTENTIAL IS VERY LARGE
Availability of ADS can enable early introduction of Thorium and enhance capacity growth rate.

Globally Advanced Technology
World class performance

Globally Unique
Fast Breeder Reactors

• 20 years experience in operating Fast Breeder Test Reactor (FBTR):
 Successful operation with indigenously developed unique mixed carbide (UC + PuC) fuel in FBTR - Burn-up exceeded 150,000 MWd/t without a single fuel pin failure.

• Maturity in molten sodium technology.

• The FBTR fuel discharged at 100,000 MWd/t & successfully reprocessed: First time that the Plutonium-rich carbide fuel has been reprocessed anywhere in the world.

• Construction of prototype 500 MWe FBR started in October 2004.
Indian Nuclear Power Programme - 2020

<table>
<thead>
<tr>
<th>REACTOR TYPE AND CAPACITIES</th>
<th>CAPACITY (MWe)</th>
<th>CUMULATIVE CAPACITY (MWe)</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ 17 reactors at 6 sites in operation</td>
<td>4,120</td>
<td>4,120</td>
</tr>
<tr>
<td>Tarapur, Rawatbhata, Kalpakkam, Narora, Kakrapar and Kaiga</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▶ 3 PHWRs under construction at Kaiga 4 (220 MWe), RAPP-5&6(2x220 MWe)</td>
<td>660</td>
<td>4,780</td>
</tr>
<tr>
<td>▶ 2 LWRs under construction at Kudankulam(2x1000 MWe)</td>
<td>2,000</td>
<td>6,780</td>
</tr>
<tr>
<td>▶ PFBR under construction at Kalpakkam (1 X 500 MWe)</td>
<td>500</td>
<td>7,280</td>
</tr>
<tr>
<td>▶ Projects planned till 2020</td>
<td>7,900</td>
<td>15,180</td>
</tr>
<tr>
<td>PHWRs(8x700 MWe), FBRs(4x500 MWe), AHWR(1x300 MWe)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▶ Additional LWRs through international cooperation</td>
<td>~ 20000</td>
<td>~ 35000</td>
</tr>
</tbody>
</table>
Growth of nuclear power through Fast Breeder Reactors (FBR)

- Initially supported by Pu from PHWR spent fuel.
- Development of metallic fuel for improved breeding ratio (reduced fuel doubling time).
- Faster capacity growth in power generation from FBRs.
- Increased unit size up to 1000 MWe.
World Thorium Resources

<table>
<thead>
<tr>
<th>Country</th>
<th>Reserves (tons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>300,000</td>
</tr>
<tr>
<td>India</td>
<td>290,000</td>
</tr>
<tr>
<td>Norway</td>
<td>170,000</td>
</tr>
<tr>
<td>USA</td>
<td>160,000</td>
</tr>
<tr>
<td>Canada</td>
<td>100,000</td>
</tr>
<tr>
<td>S. Africa</td>
<td>35,000</td>
</tr>
<tr>
<td>Brazil</td>
<td>16,000</td>
</tr>
<tr>
<td>Malaysia</td>
<td>4,500</td>
</tr>
<tr>
<td>Other Countries</td>
<td>95,000</td>
</tr>
<tr>
<td>World total</td>
<td>1,200,000</td>
</tr>
</tbody>
</table>
Advanced Heavy Water Reactor (AHWR)

- Vertical pressure tube.
- Boiling light water cooled.
- Heavy water moderated.
- Fuelled by ^{233}U-Th MOX and Pu-Th MOX.

Major Design Objectives

- Power output – 300 MWe with 500 m3/d of desalinated water.
- Core heat removal by natural circulation.
- A large fraction (65%) of power from thorium.
- Extensive deployment of passive safety features – 3 days grace period, and no need for planning off-site emergency measures.
- Design life of 100 years.
- Easily replaceable coolant channels.

Technology demonstration for large-scale thorium utilization

- Currently under Pre-Licensing Safety Appraisal by AERB.
- International recognition as an innovative design.
Thorium fuel breeder reactor

- Fuel doubling time depends on: surplus neutrons per fission in the reactor system.
- Also ensure safe reactor operation.
- ^{239}Pu-fuel: surplus neutrons only in fast spectrum.
- ^{233}U-fuel: similar neutron surpluses in fast & thermal spectra.
Fuel Breeding in Critical vs. sub-critical reactors
(cases of $^{238}\text{U-Pu}$ & $^{232}\text{Th-U}$)

<table>
<thead>
<tr>
<th>Fissile isotope</th>
<th>Neutron spectrum</th>
<th>Neutrons per fission (ν)</th>
<th>Alfa (α)= capture/ fission ratio</th>
<th>Surplus Neutrons for $k = 1$; $\nu_c = 0.25$</th>
<th>Neutron balance for $k = 0.95$; $\nu_c = 0.25$</th>
<th>Percentage improvement with $k=0.95$</th>
<th>Remark on breeding potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pu-239</td>
<td>Thermal</td>
<td>2.871</td>
<td>0.36</td>
<td>-0.10</td>
<td>0.05</td>
<td>150%</td>
<td>Poor breeding- with & without ADS.</td>
</tr>
<tr>
<td>...do..</td>
<td>Fast</td>
<td>2.98</td>
<td>0.14</td>
<td>0.45</td>
<td>0.61</td>
<td>35%</td>
<td>Can breed without ADS</td>
</tr>
<tr>
<td>U-233</td>
<td>Thermal</td>
<td>2.492</td>
<td>0.09</td>
<td>0.06</td>
<td>0.19</td>
<td>216%</td>
<td>Poor k=1 breeding; ADS helps</td>
</tr>
<tr>
<td>...do..</td>
<td>Fast</td>
<td>2.492</td>
<td>0.093</td>
<td>0.06</td>
<td>0.19</td>
<td>216%</td>
<td>Poor k=1 breeding; ADS helps</td>
</tr>
</tbody>
</table>
Nuclear waste disposal by **Transmutation**

- Accumulation of spent fuel: a global issue.
- Spent fuel requires > 100,000 years to decay.
- Transuranic elements (TRUs: Np, Pu, Am & Cm) + a few long-lived fission products (FPs): decay very slowly.
- Bulk of FPs decay to safe disposal levels in 3-5 centuries.
- If TRUs transmuted into FPs by fission: bulk of FPs decay very fast.
Transmutation of TRUs by fission

- Isotopes of transuranic element (TRU) : fissionable in fast neutron spectrum.
- TRU burner reactor needs fertile-free fuel feed.
- Difficult power control system of critical reactor due to:
 - Reduced delayed neutron fraction (factor called β_{eff}) giving lower safety margin to prompt criticality.
 - Safety parameters: (1) Doppler coefficient, (2) reactivity temperature coefficient, and (3) void fraction all would not be benign in TRU incinerating critical fast reactor.
- There is strong case to operate such reactors in sub-critical mode- like ADS, for ensuring deterministic nuclear safety under all conditions.
Basic operating principles in conventional & sub-critical reactors {=Energy Amplifier}

Conventional reactors work with chain reaction by self generated neutrons.

Energy Amplifier- i.e. Accelerator Driven Sub-critical Reactor, works with externally generated neutrons: giving better neutron economy and safety in operations.

Self-sustaining chain reactions: conventional reactors

Self-terminating fission chains: sub-critical reactors
Schematic of ADS - energy balance

Subcritical Core

Spallation target
neutrons
Target

Accelerator
(LINAC or Cyclotron)

Energy extraction
Efficiency = η_e

Fraction f of the energy back to drive accelerator

GRID

Fraction (1-f) of the energy

~ 10 MWt

~ 20 MWe

~ 280 MWe

~ 1000 MWt @ $k_{eff} = 0.98$

~ 300 MWe @ $\eta_e = 0.33$
ADS Reactor: start up & operation studies (for 200 MWe)

Heavy Water reactor (HWR)
- As ADS (10 MW beam): with thorium solid fuel: 20 years to reach full power.
- If reactor start with natural U fuel: self-sustainable power operation with 30 MW proton beam from day one. Then, gradually replace U with Th.
- Beam power can be 15 MW when spent fuel reprocessed and recovered 233U is recycled.
- Otherwise, self-sustainable power operation @~ 200 Mwe; even for once-through thorium use & no reprocessing to recycle 233U.

Molten-salt reactor (MSR)
- As ADS (10 MW beam): with thorium only fuel salt & online removal of fission products: 5.5 year to reach full power using 10 MW proton beam.
- If reactor start with natural U salt fuel, full power from day one. Then, gradually replace U with Th-salts.
- Thereafter, self-sustainable power operation @~ 200 Mwe even for once-through thorium use & no reprocessing to recycle 233U.
Technologies for ADS

• High power proton accelerator: 1 GeV, cw or high duty factor, high current
 • High beam current front-end
 • Superconducting RF cavities
 • RF power systems

• Molten heavy metal spallation target & associated process system.
 • High volumetric beam power density
 • Materials: irradiation and corrosion resistant

• Sub-critical reactor
 • Dedicated TRU transmuter fuel & fuel-cycle
 • Configuration: technology issues
 • Transients & safety studies
Ongoing Indian activities in ADS programme

- Design studies of a 1 GeV, 30 mA proton linac.
- Development of 20 MeV high current proton linac for front-end accelerator of ADS.
- Construction of LBE experimental loop for design validation and materials tests for spallation target module.
- Development of computational tools and data for neutronics of spallation target and coupled sub-critical reactor.
- Experimental validation of reactor physics codes and data with 14-MeV neutrons in sub-critical core at PURNIMA labs.
- Design studies for ADS experimental reactor
Experiments on physics of ADS and validation of simulations.

Use of 14-MeV neutrons produced by DC accelerator & D+T reaction. Also, a 400-keV RFQ is being built for higher beam current.

Simple sub-critical assembly ($k_{eff}=0.87$) of natural uranium and light water is chosen.

Plans for: measurements of flux distribution, flux spectra, total fission power, source multiplication, and degree of sub-criticality will be carried out.
Programmes carried out so far……..

- Physics Simulation - spallation reactions- GeV protons
- Heat dissipation in spallation target /window; neutron production and spectra; different targets
- Comparison of FLUKA and CASCADE
- Compound Nucleus (CN) Reactions- EMPIRE
- Residual Nuclei production
- keV – MeV neutrons- measurements at the Pelletron
- Synergy between DAE and universities- BRNS
- Formation of Nuclear Data Coordination Committee – NDC@BARC
Design studies: 30-MWt reactor → ADS

Critical Reactor with 24 lattice positions- 20 standard fuel & 4 control fuel assemblies.

ADS conversion with removal of 4-central lattice positions: space created for spallation target module- driven with 600 MeV protons, 0.3 mA (av.).
By using two-energy amplifiers:

Requirement of primary proton beam current can be lowered substantially, such that gain:

\[G_b = G_0 \times \frac{k_i}{(1-k_i)} \]

is gain in booster,

Net neutronic gain \(G_n = \frac{G_b}{(1-k_2)} \)

Driver beam current requirements reduced by factor \(G_n \) \((1-k_2)\).

In one-way coupled system, the overall \(K_{eff} \),

\[k_{12} = k_1 \text{ or } k_2 \text{ whichever is larger.} \]

Fast booster zone may consume
\(^{240,242}\text{Pu, Np etc.} \text{...and thermal region has Th}+\text{ }^{233}\text{U as fuel.} \)
One-way coupled ADS scheme for Thorium Utilization & Actinides Transmutation

- **Minor actinides-rich fuel**
- **Thorium-based fuel**

Reducing accelerator beam current requirement by two methods:

1. One-way fast-thermal zone neutronic coupling.
2. High neutron multiplicity of core and power control by using control rods as well as beam current modulation (Carlo Rubbia proposal).
Liquid heavy-metal flow diagnostics & corrosion studies

Mercury Loop
- Simulation of Window/Windowless Target
- Velocity field mapping by UVP monitor
- Carry-under studies
- Two-phase flow studies by Gamma Ray
- Laser-triangulation for free surface measurement
- CFD code validation
- Gas-driven flow studies

LBE Corrosion Loop
- Height ~ 7m
- Flow Rate ~1.7 kg/s
- Temp: 550°C and 450°C
- Velocity in the Samples~0.6 m/s
- Corrosion Tests: Charpy and Tensile after 3000 hrs in the flow
LBE-loop for Thermal-hydraulics studies

- Vertical Cantilever Pump
- Separator
- Window Target module
- Dump Tank
- LBE-Water HX
- LBE-Dowtherm HX
- Heater

LBE Pump
Proton cyclotron Beamline for target studies at VECC, Kolkata (30 MeV Cyclotron)
Windowless liquid-metal spallation target
(Presently under studies for feasibility)

Interface from target-coolant to accelerator vacuum is a free surface of the liquid metal. Liquid volume below serves as spallation target.

This is possible due to very low vapour pressure ($\sim 10^{-4}$ Torr) of lead and LBE at the operating temperatures of less than ~ 400 °C.

Need for a structural, safety-related item (window), exposed to peak intensity of particle flux in the spallation zone, is completely eliminated.
Essential features of proton accelerator for ADS

<table>
<thead>
<tr>
<th>Functional requirements</th>
<th>Design features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proton accelerator:</td>
<td>Requires elaborate radiation & beam safety measures.</td>
</tr>
<tr>
<td>1 GeV & ~30 MW beam</td>
<td></td>
</tr>
<tr>
<td>power.</td>
<td></td>
</tr>
<tr>
<td>High efficiency of</td>
<td>Requires superconducting RF cavities to save on dissipation in cavities</td>
</tr>
<tr>
<td>conversion from electrical grid into beam power.</td>
<td></td>
</tr>
<tr>
<td>High Reliability to</td>
<td>• Redundancy of systems,</td>
</tr>
<tr>
<td>achieve less than ~10</td>
<td>• Standby modules</td>
</tr>
<tr>
<td>beam trips per year.</td>
<td>• Relaxed design of system parameters</td>
</tr>
<tr>
<td>Beam spill: to be</td>
<td>• Beam with low emittance,</td>
</tr>
<tr>
<td>minimized <1 watt beam</td>
<td>• As large aperture of accelerating structure as possible.</td>
</tr>
<tr>
<td>power loss per meter to</td>
<td></td>
</tr>
<tr>
<td>reduce activation &</td>
<td></td>
</tr>
<tr>
<td>allow hands-on</td>
<td></td>
</tr>
<tr>
<td>maintenance by</td>
<td></td>
</tr>
<tr>
<td>O&M personnel.</td>
<td></td>
</tr>
</tbody>
</table>
Accelerator Driven System Roadmap with Proton Accelerator Development stages.

- **I. S.**
- **RFQ**
- **DTL/CC**
- **CCL**

End use:
- **ADS R & D**
- **RIB**
- **Radio-isotopes**

Linac: 70-100 MeV, ≥ 10 mA

- **Superconducting Nb RF Cavity Development.**
- **Cryogenics Technology to establish 500 W Helium Cryo-refrigerator.**
- **Build one prototype for each cavity type & beam-test.**

PHASE-I PROGRAMME

~10 MeV, ≥ 10 mA.

≥ 150 MeV, ≥ 5 mA.

0.8-1 GeV, ≥ 5 mA.

PHASE-II PROGRAMME

CYCLOTRON

End use:
- **ADS Prototype**
- **~ 750 MW,**

LINAC

End use:
- **Spallation neutron source**

End use:
- **ADS R&D**
- **ADS DEMO**

High-β SC Linac

≥ 500 MeV, or,

Injector for SNS @ ~ 100 MeV

High-β SC RF Linac

0.8-1 GeV, ≥10 mA (CW)
Scheme of Proton Linac Development

High current injector 20 MeV, 30 mA

Proton IS 50 keV → RFQ 3 MeV → DTL 20 MeV → DTL/CCDTL → 100 MeV → SC Linac

Design completed and fabrication is in progress

ECR Ion Source

RFQ

Beginning Cell

Coupling Cell

DTL

Elliptical SC Cavity

Normal Conducting

1 GeV

Proton beam from high power accelerator

Extended lead molten medium

Spallation target; liquid Pb, Pb+Bi, W (solid) etc.

Breeding

Fuel

Spallation reaction Zone

Fission

n

n

n

n

n
20-MeV proton linac-LEHIPA

EQUIPMENT DIAGRAM
OF LEHIPA

ECR ION SOURCE
RF P/S
HV DC P/S

RFQ
VACUUM SYSTEM
FST-1
FST-2

KLYSTRONS
RF LINES (WAVEGUIDE)

HC DC POWER SUPPLIES

RF LINES
BEAM DIAGNOSTICS
BEAM DUMP

Pre-braze inspection

RFQ vane machined

Aluminum short model

DTL study model
High-energy section for Linac

- Use of multi-cell elliptical superconducting RF cavities: for > 100 MeV ($\beta > 0.42$) in high energy section of linac.

- Development of fabricating, processing and RF conditioning of bulk niobium SC cavities.

- Some experience exists in fabrication of QWR/HWR SC cavities for heavy-ion accelerators.

- Associated R&D progressing at BARC on:
 - Cryogenics technology
 - LHe plants and refrigerators
Indian Institutes & FNAL Collaboration: recent activities
SRF Cavity Forming Tooling development at RRCAT

Toolings

Forming Process

Formed Niobium Half Cell
SRF cavity: EB welding activities

Welding half cells to make dumbell

Setting inside the EBW chamber

Welded dumbell
Electric field along the axis

Magnetic field along the axis

Bead Pull Measurement Setup for Single-Cell SRF cavity
Wedge Tuner installed around the Helium Vessel

Wedge cavity tuner: required for slow and fast tuning of SRF cavity.
Guide Rods (4 nos)

Interface Ring (2 nos)

Wedge Tuner: details

Piezo Sub assembly

Outer Wedge Plate sub assembly

Sliding Wedge Plate sub assembly

Fixed Flat Plate sub assembly
Wedge Tuner Mock up Assembly at BARC
Summary

- Indian objective on nuclear power: sustainable utilization of thorium fuel reserves via 3-stage plan.
- ADS helps in achieving sustainable Th-utilization & eliminate long-lived TRUs.
- Thrust areas in ADS R&D programme identified in a roadmap:
 - High power superconducting proton Linac.
 - Lead & lead-bismuth liquid metal system- thermal hydraulics
 - Molten LBE/Lead compatible structural materials.
 - Spallation target neutronics and sub-critical reactor kinetics.
 - Nuclear data for thorium fuel cycle.
- Ongoing ADS-related R&D activities:
 - 14-MeV neutron based sub-critical reactor studies.
 - 20-MeV high-current proton linac.
 - LBE experimental loop.
 - Fabrication of superconducting RF cavities.
Thank You!
20 MeV Proton beam for ADS experiments in HWR critical facility

Studies have confirmed feasibility of extending 20-MeV proton beam to a target in the core of nearby HWR critical facility.
High Temperature Reactor
Nuclear energy in hydrogen economy

High Temperature Reactor for Hydrogen Production
- Conventional Nuclear Power Plant – Off-Peak hour electricity

Indian HTR Design Features
- Power: 600 MWth
- High temperature (1000 °C) Process heat production
- TRISO coated particle fuel
- Molten heavy metal/ salt based coolant
- Extensive use of carbon based components
- Passive safety features
- Passive removal of reactor heat under normal and postulated accident condition

High Grade Heat
- Electricity

Hydrogen Production Plant
- Thermo-Chemical Process
- Electrolysis including HTSE
- Electricity and Potable water

Solid Oxide Fuel Cell

Proton Exchange Membrane Fuel Cell

Reject and waste Heat
- Hydrogen Storage
- Hydrogen Utilisation
ADS-demonstration reactor

• Studies made on a design of 30-MWt thermal reactor compatible for ADS demonstration project.

• This ADS configuration is planned for feasibility demonstration at a few MWt fission power level.

• Physics studies are in progress at BARC-reactor has pool type core in open tank, light water is moderator & heavy-water makes reflector shield. LEU used as plate type fuel assemblies of uranium silicide (U_3Si_2) dispersed in aluminum matrix.
Cavity design work with MSU/FNAL for:

- Benchmarking cavity simulation codes/techniques
- Study of $\beta = 0.8$ new cavity geometries with FNAL and comparison of results.

ANSYS simulations to study LFD
Design simulations of spallation target for ADS

Simulator results of proton beam heat deposition rate in lead (Pb) spallation target at different beam energies using FLUKA (CERN) & CASCADE (JINR, Russia) codes.

Thermal hydraulics models for flow of spallation target-coolant LBE-

(a) by buoyancy,
(b) by gas-injection enhanced flow
Nuclear Data Measurements

232Th(6Li,4He) surrogate reaction for 233Pa(n,f)
(Experiment at BARC-TIFR Pelletron facility, Mumbai)