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Why a Muon Collider?

e Point like interactions as in linear eTe™

e Negligible synchrotron radiation:
Acceleration in rings  Small footprint Less rf Hopefully cheaper

e Collider is a Ring
~ 1000 crossings per bunch  Larger spot  Easier tolerances 2 Detectors

e Negligible Beamstrahlung  Narrow energy spread

e 40,000 greater S channel Higgs Enabling study of widths
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Current Baseline Parameters (Y Alexahin)

C of m Energy 1.5 3 TeV
Luminosity 0.92 3.4 [10%* cm?sec!
Beam-beam Tune Shift| 0.087 | 0.087

Muons/bunch 2 2 1012
Total muon Power 9 15 MW
Ring <bending field> 6 8.4 T
Ring circumference 2.6 4.5 km
f*atlP =0, 10 5 mm
rms momentum spread | 0.1 0.1 %
Muon per 8 GeV p 0.008 | 0.007

Repetition Rate 15 12 Hz
Proton Driver power [3.5-4.8| 3-4.3 MW
Muon Trans Emittance | 25 25 pi mm mrad
Muon Long Emittance | 72,000 | 72,000 | pi mm mrad

e Lower power estimate based on MARS15

e Emittance and bunch intensity requirement same for both examples
e 3 TeV luminosity (3.4 10%*) compared to CLIC's (2 10%* for dE/E < 1%)

e Luminosities should be higher due to 'Disruption’ enhancement
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Neutrino Radiation Constraint (B King)
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e Little problem at 1.5 TeV

e Required depth of order 200 m for 3 TeV
and straight sections must be minimized or aimed at owned locations
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Emittances vs. Stage
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e Every stage simulated at some level,

e But with many caveats



Proton driver

MARS 15 (N Mokhov, H Kirk, X Ding)
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e Clear advantage in proton energy ~ 8 GeV

— But requires 170-280 Tp in 3 nsec

— Bunching ok with multiple (= 8) bunches (Ankenbrandt)
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Target and Capture
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e Mercury Jet Target, 20 T capture

e Adiabatic taperto 2 T

e Discussed by Geer
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Phase Rotation (D Neuffer)

dE e Drifts
o e Multiple frequency rf
Drift RF Buncher 999 RF 0000000 e Bunch
eeee e Then phase to rotate
dt

e Discussed by Geer

Both of these would be substantially the same as for a Neutrino Factory
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Several methods under study

6D Cooling

(R Palmer)

a) ”Guggenheim” Lattice

e Lattice arranged as 'Guggenheim’ upward helix

e Bending gives dispersion

e Higher momenta pass through longer paths in wedge absorbers giving mo-

emittance exchange)

(

e Starting at 201 MHz and 3 T, ending at 805 MHz and 10 T

mentum cooling

e.g. 805 MHz 10 T cooling to 400 mm mrad
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b) Snake (Y Alexahin)

e Tilted alternating solenoids generate dispersion

e Higher momenta pass through absorbers at steeper angles giving momentum
cooling (emittance exchange)

e Lattice accepts both signs
e Starting at 201 MHz and 2.5 T, ending at 805 MHz and 10 T

Alternating tilted Hydrogen
solenoids aborbers

rf
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c) Helical Cooling Channel (HCC) Derbenev)

e Muons move in helical paths in high pressure hydrogen gas

e Higher momentum tracks have longer trajectories giving momentum cooling
(emittance exchange)

H2 gas SC Coils rf cavities

o
0.5 -. 1N _ _. o B _ __ ol elnitial Bz=43 T
] JNTKD ol m LY o Final Bz=17.2 T
o W=t 1} N 1 ol *fl, (Higher than snake
I M E . 1 Ll el or guggenheim)
0.5 = " ._ - " -_ |
1= 5 o5 1 T ; 35 3 35 2
meaters

e Engineering integration of rf difficult

e Possible problem of rf breakdown with intense muon beam transit
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Final Transv. Cooling in High Field Solenoids (Palmer)

e Lower momenta allow transverse cooling to lower transverse emittances, but
longitudinal emittance rises: Effectively reverse emittance exchange

Liquid Hydrogen 50 T Solenoids

-

Re-acceleration & Matching

e Need 5-8 50 T solenoids
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e |[COOL Simulation of cooling in solenoids
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e Simulation of re-acceleration & matching only for last two stages

e 50 T Solenoid technology

— 45 T hybrid at NHMFL, but uses 25W

—40 T HTS experiment under construction (later)

—50 T 'all HTS' designs
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Acceleration

e Sufficiently rapid acceleration is straightforward in Linacs

and Recirculating linear accelerators (RLAs)
Possibly using ILC-like 1.3 GHz rf

e Lower cost solution would use Pulsed Synchrotrons (D Summers)

— Pulsed synchrotron 30 to 400 GeV  (in Tevatron tunnel)

— Hybrid SC & pulsed magnet synchrotron 400-900 GeV
(in Tevatron tunnel) For < 1.8 TeV

— Hybrid SC & pulsed magnet synchrotron 900-1500 GeV
(in new tunnel For 3 TeV

y (cm)

Quadrupole Quadrupole
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10 — -1
Pulsed -1.8to I.8 T
0
Efggg gzx Superconducting 8 T
10 I I I I

0 10 Length (m) 20 30
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Collider Ring
e 1.5 TeV new lattice (Y Alexahin, E Gianfelice-Wendt)

correctors multipoles for higher order chrom. correction
3 Dx (m)

quads sextupoles bends

200 |

o : ‘fﬂy Chrom. Correction Block

v
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100 |

so |
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— 4.5 sigma dynamic aperture
—0.8% dp/p (need only 0.3%) May allow greater ¢ and thus smaller ¢
— Smaller circumference (2.6 km vs 3.1 km) increasing luminosity

e 4 TeV (c of m) 1996 design (Oide)

— Meets requirements in ideal simulation
— But is too sensitive to errors to be realistic - needs work
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Detector From 1996 Study of 4 TeV (I Stumer N Mokhov)
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Shielding Detector

e Sophisticated shielding of decay electron background designed for 1996 4 TeV
e GEANT simulations then indicated acceptable backgrounds

e Would be less of a problem now with finer pixel detectors

BUT
e Tungsten shielding takes up 20 degree cone

e Simulation now re-started
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Layout of 3 TeV Collider using pulsed synchrotrons

Hybrid 0.95-2.0 TeV

Down sloping
Transfer lines

Deep Collider Ring

Pulsed 30-400 GeV
Hybrid 0.4-.95 TeV

(in TeVatron tunnel)

Transfer lines

16



R&D AND EXPERIMENTS
1) MERIT Experiment at CERN

Discussed by Geer
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2) Muon Ionization Cooling Experiment (MICE)
International collaboration at RAL, US, UK, Japan (Blondel)

e Will demonstrate transverse cooling in liquid hydrogen, including rf re-acceleration

e Uses a different version of 'Guggenheim’ lattice
But, as now configured, has no bending or emittance exchange

sd i Estrume nta'tion

Insirumentatibn " lonization Cooling

e Possible test of emittance exchange in single wedge absorber
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3) HTS R&D towards a 50 T solenoid
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e« BNL/PBL Program (SBIR)

e Nested YBCO HTS coils under construction
12 + 10 T = 22 T stand alone

e Approx 40 T in 19 T NHMFL magnet

@ Design for 19 T NbTi + Nb3Sn design
is straightforward
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4) MuCool, and MuCool Test Area (MTA) at FNAL

International collaboration US, UK, Japan (Bross)

e Liquid hydrogen absorber tested
e Open & pillbox 805 MHz cavities in magnetic fields to 4 T

e 201 MHz cavity tested in stray magnetic field of 0.7 T
Later, with coupling coil, to 2T

e High pressure H2 gas 805 MHz pillbox cavity tested
e Soon: 805 MHz gas Cavity with proton beam

— A
e e i
i i £ -201 MHz Cavity
N,

Supercondy
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e st
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HP Gas cavity 805 MHz in 4 T magnet 201 MHz next to magnet
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rf breakdown in magnetic fields
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.. but prediction needs 3D diffusion
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Solutions under study

1. Improved surface preparation e.g. ALD (ongoing) (J Norem)
2. HP Gas filled cavities (in beam in few months) (R Johnson)

3. Magnetic insulation: B L E (in 1 month) (Palmer, Stratakis)
4. Use of Beryllium (button in a few months) (Palmer Stratakis)
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R&D plan submitted to DoE

FY0S |FY10 | FY11 |[Fy12 |[FY13 [FY14 [FY15 |FYi6e |FY17 |[FY18 (FY19 [FY20 | FY21
MERIT tgt exp
—l |
MICE Colﬂling Exp
| |
Component R&D
Other Demo Experiments
- e —
'RDR M
CDR!_
Construction -> 2029
A CD-O
A Choice of staged or direct path
8 [1 |13 |20 |25 |25 |25 |35 |40 |40 R&D Funds M$/year

Delayed 1 year from P5 presentation
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Conclusion

+

e Muon Colliders have significant advantages vs. ¢™ — e linear colliders

— smaller footprint
— easier tolerances
e But also challenges

— neutrino radiation
— new technologies for ionization cooling

— decay electron backgrounds in detector

e |t also needs a challenging proton driver

—4-5 MW at 8 GeV
— few very intense (170-280 Tp) bunches

— compressed to short pulses (0:=3 ns)

e Full 8 GeV SC linac would be a good candidate

— Solutions using a lower energy SC linac need study

e R&D started on target, cooling, HTS solenoids, rf

— Problem with rf in magnetic fields being addressed
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