

3

Novel Accelerator Magnets Compatible with High Energy Deposition

Muon Collider Physics Workshop FNAL ---- November 12, 2009

R.B. Meinke, P.Masson Advanced Magnet Lab, Inc.

DOUBLE-HELIXTM (DH) COIL CONFIGURATIONS

$$X(\theta) = \frac{h}{2\pi}\theta + \sum_{n} A_{n} \sin(n\theta + \varphi_{n})$$
$$Y(\theta) = R * \cos(\theta)$$
$$Z(\theta) = R * \sin(\theta)$$

Transverse magnetic fields: Generated by "modulated" solenoid winding patterns

Y-Axis [mm]

- Pure multipole fields without field shaping spacers
 - Small systematic field errors
- **Precise conductor placement in machined support grooves**
 - Small random field errors
- Accommodates different conductor forms
 - Wire, cable, tape, mini CICC
- **Bent coils with pure multipole order**
 - > Multipole fields introduced by bend can be compensated
- **Combined Function Magnets**
 - Almost any combination of MP fields possible

- Placement of conductor in V-shaped grooves
 - > Enables adhesive free coils
 - Highly efficient cooling similar to CICC
- □ Mechanical robust solenoid-like winding configuration
 - Excellent quench performance
- Intrinsically large bending radii
 - Facilitating use of brittle conductors (Nb₃Sn, HTS)
- □ High electrical breakdown strength
 - High reliability
- No magnet specific tooling required
 - Cost-effective manufacturing process
 - > One of a kind magnets with little or no cost penalty

Field Uniformity in DH Coils

Field Uniformity in Bent DH Coils

6

Manufacturing of Bent Coil

Manufacturing of Bent Coil

Iron Yoke Assembly

- Standard wire
 - No insulation required
- Round mini cable
 - 6-aound-1, 15-strands --- fully transposed
- Square mini cable
 - Increase engineering current density
- HTS tape conductor
 - > YBCO, MgB2
- Cable-in-Conduit Conductor
 - > Mini CICC (see Presentation by S. Pourrahimi)`
 - ➢ Nb₃Sn conductor for wind-and-react
 - HTS conductor for applications requiring high temperature margin

Parameter	Unit	Value
SC Current Density	A/mm ²	1000
Cu to Non-Cu Ratio		0.33
Strand Diameter	mm	0.18
Filament Diameter	μm	1.00
Twist Pitch	mm	5.0
Eff. Matrix Resistivity	Ohm*m	1.0E-08
Number of Strands		18

	Frequency	
	10 Hz	60 Hz
Magnetization Losses [W]	3.90	23.3
Eddy Current Losses [W]	0.36	13.0
Coupling Losses [W]	28.60	1030
TOTAL Losses [W]	32.86	1066.3

Coupling losses, due to matrix resistivity are dominant
Using a miniature CICC in a DH configuration enables operation at 10 Hz and above

2 kG dipole magnets, AC excitation \leq 1kHz, Field uniformity < 1×10⁻³

Highly cooling efficiency by direct contact of LN2 with conductors

HTS conductors in V-shaped grooves would offer unprecedented quench energy margin

Bent – Combined Function Magnets

Bent dipole magnet with compensated quadrupole

Combined function magnet – quadrupole with superimposed dipole

Direct Double-Helix[™] Technology

- Resistive magnets with unprecedented current density
 - Current densities well above 100 A/mm² possible approaching performance of SC
 - Great potential for new nano materials

Advanced M

Create conductor and coil in-situ from "arbitrary" materials

- Field generating current path machined out of conductive cylinders
- Complete control over conductor cross section along its path
- Constraints caused by wire manufacturing eliminated
- Very high cooling efficiency with insignificant thermal gradients
- Current densities in excess of 100 A/mm² in DC operation of normal conductors achieved
- High field uniformity due to Double-Helix[™] winding configuration
- Magnets with arbitrary multipole order and combined function
- Highly cost-effective since no magnet-specific tooling is needed
- Unprecedented miniaturization of coils feasible
- High radiation hardness based on metals and ceramic materials

0.1 Tesla (operates in 9Tesla background field)Beam aperture: 20 mmMagnet OD: 40 mm

Temperature Distribution along 1 turn

Current density distribution

Summary

- ✓ Double-Helix and Direct-Double-Helix Technology enables unprecedented performance in respect to energy deposition.
- The technology accommodates advanced conductors that offer large energy margins due to AC losses and energy deposition.
- CIC conductors --well qualified in fusion magnets -- become available for accelerator magnets.
- ✓ The DH and DDH technology offers small systematic field errors without complex field forming spacers.
- ✓ The unique manufacturing process of DH and DDH coils enables cost effective manufacturing and rapid prototyping.