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Non-standard neutrino interactions (NSI)

Low-energy fingerprint of new physics often has the form of effective
4-fermion interactions.
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Non-standard neutrino interactions (NSI)

Low-energy fingerprint of new physics often has the form of effective
4-fermion interactions.

Neutrino oscillations including NSI

Pνs
α→νd

β
= |〈νd

β |e−i(H+VNSI)L|νs
α〉|2 = |〈νd

β |(1 + εd )e−i(H+VNSI)L(1 + εs)|νs
α〉|2

CC type NSI: Flavour mixture at source and detector (Grossman PL B359 (1995) 141)

|νs
α〉 = |να〉+

∑
β=e,µ,τ

εs
αβ |νβ〉, e.g. π+

εs
µe−−→ µ+νe

〈νd
β | = 〈νβ |+

∑
α=e,µ,τ

εd
αβ〈να| e.g. ντ N

εd
τe−−→ e−X

NC type NSI: Extra matter effects in propagation
Wolfenstein PR D17 (1978) 2369, Valle PL B199 (1987) 432, Guzzo Masiero Petcov PL B260 (1991) 154, Roulet PR D44 (1991) R935, etc.

(VNSI)αβ =
√

2GF Neε
m
αβ
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Non-standard neutrino interactions (NSI)

Generic expectation: |ε| ∼ M2
W /M2

NSI . 10−2

Current model-independent bounds: Typically O(10−2 − 10−1)

Bounds are usually stronger in concrete models.
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NSI in models

How large can NSI be in concrete models?

dim = 6 operators

s
s- �

� -

λeµ

(λeτ )∗

1/M2
1s

Le Lτ

Le Lµ

s
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� -

λeµ

(λeµ)∗

1/M2
1s

Le Lµ

Le Lµ

s
s- �

� -

λeτ

(λeτ )∗

1/M2
1s

Le Lτ

Le Lτ

Gauge invariance: NSI accompanied by charged lepton flavor violation
→ generically, strong bounds apply
Exception: eeντντ coupling: εm

ττ ∼ 0.1 allowed.

Not all εs,d,m
αβ are independent

Gavela Hernandez Ota Winter arXiv:0809.3451
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More freedom to suppress charged LFV
But have to cancel accompanying dim = 6 operators (→ symmetries,
fine-tuning)
Suppressed by M2

W v2/M4
NSI → smaller than dim = 6 effects

Not all εs,d,m
αβ are independent

Gavela Hernandez Ota Winter arXiv:0809.3451
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Non-unitary lepton mixing
A special type of non-standard interactions

General idea: Lepton mixing matrix U replaced by non-unitary matrix
N = (1 + ε)U with ε = ε†.

Current model-independent bounds (from W and Z decays, universality tests,
LFV):

|ε| ≈

< 2.0 · 10−3 < 3.5 · 10−5 < 8.0 · 10−3

< 3.5 · 10−5 < 8.0 · 10−4 < 5.1 · 10−3

< 8.0 · 10−3 < 5.1 · 10−3 < 2.7 · 10−3

 (90% C.L.)

Antusch Blennow Fernandez-Martinez arXiv:0903.3986 and references therein

Bounds are usually stronger in concrete models.
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Non-unitarity in inverse seesaw models

Introduce 3 right handed neutrinos Ni + 3 extra singlet fermions Si
Ni and Si form pseudo-Dirac multiplets.

Complete 9× 9 mass matrix: 0 mT
D 0

mD 0 MT

0 M µ

 mD ∼ O(100 GeV) , µ ∼ O(1 keV) , M ∼ O(104 GeV)

Effective light neutrino mass matrix:

mν = mT
D (MT )−1 µ M−1 mD ∼ O(1 eV)

Light neutrinos mix with heavy states at the level of mD M−1 ∼ 10−2

→ Unitarity violation at the per cent level
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Sterile neutrinos
A special type of non-unitarity

Example: One extra sterile neutrino Donini Fuki López-Pavó Meloni Yasuda arXiv:0812.3703

Two possible schemes:

m2
1

m2
2

m2
3

m2
4

m2
1

m2
3

m2
3

m2
4

(a) (b)

2+2 3+1

2+2 ruled out
3+1 OK if LSND is ignored
For large ∆m2

41, coherent production is
impossible → effective three-flavour
situation. Condition:

σm2 =
√

(2EσE)2 + (2pσp)2 > ∆m2
41Kayser 1981

Mixing matrix is now 4× 4.
Upper left 3× 3 submatrix is non-unitary.
⇒ Experiment sees apparent unitarity
violation.
Note: Nν,light ≥ 4 disfavoured by BBN.
Barger Kneller Lee Marfatia Steigmann hep-ph/0305075
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NSI discovery potential of near detectors

Look for anomalous CC couplings (O(ε2) effects):

νµ + N → e + X , νe + N → µ + X
Limited by uncertainties in primary fluxes
Different spectrum helps a little
Sensitivity to εs

αβ , εd
αβ is O(10−1 − 10−2)

Much easier to see with neutrinos from muon beam
NSI can spoil calibration of far detector oscillation analysis!
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NSI discovery potential of near detectors

Look for anomalous CC couplings (O(ε2) effects):

νµ + N → τ + X , νe + N → τ + X
Detector technology: Emulsion Cloud Chamber (ECC)

Image: OPERA

2m × 2m acceptance
feasible @ 5M$.
Full scanning of last plane
feasible.
Extremely good
background suppression
→ Sensitivity to O(10−6)
effects
Translates into ε ∼ 10−3

Adam Para is the expert!
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Discovery potential of far detectors

Advantages of far detectors for new physics search:
Sensitivity to non-standard matter effects
Sensitivity to larger number of channels by interference of standard and
non-standard amplitudes
e.g. π

NSI−−→ ντ
osc.−−→ νµ

Disadvantages of far detectors for new physics search:
Low event rate
Disentangling different contributions is hard
(parameter correlations, degeneracies)

⇒ Fortunately, future experiments will have near and far detectors.
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NSI sensitivity of FNAL-DUSEL wide band beam
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Εee
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ΕeΜ
m

ΕeΤ
m

ΕΜΜ
m

ΕΜΤ
m

ΕΤΤ
m

ÈΕÈ

WBB, 300 kt WC � 1300 km + 1 kt ND

GLoBES 2009

better

90% C.L. discovery reach

sin22Θ13 = 0.05, ∆CP = 3�2 Π

only one Ε ¹ 0 at a time

Favorable phase

Unfavorable phase

Current bounds

GLoBES simulation:
ν + ν̄ running
3× 1021 p+ on target each
Far detector: 300 kt (fiducial)
water Čerenkov @ 1 300 km
Includes hypothetical 1 kt
water Čerenkov near detector
Includes 3-flavor treatment,
systematical uncertainties,
detector response function,
parameter correlations, . . .

GLoBES experiment description based on work by Mary Bishai, Mark
Dierckxsens, Milind Diwan, Christine Lewis, Patrick Huber
Current bounds from Biggio Blennow Fernandez-Martinez
arXiv:0907.0097

Result:
Bounds can be improved by up to
one order of magnitude, but not to
the level that is interesting from a
model builder’s point of view.
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Light long-lived hidden sector particles

Light hidden sectors motivated by recent results on Dark Matter

Hidden U(1)′ + hidden Higgs boson hD

hD produced in beam dump experiment
(a)

q̄

q

A′
hD

aD

(b)

q̄

q

A′∗
hD

A′

Long-lived because A′-mediated decay to SM particles is suppressed
Possible signature: Decay into `+`− pair behind shielding.

Batell Pospelov Ritz arXiv:0906.5614, Schuster Tori Yavin arXiv:0910.1602
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Light long-lived hidden sector particles

Hidden U(1)′ + hidden Higgs boson hD

Sensitivity of different experiments to e+e− and µ+µ− final states:
Right plot: Shaded regions indicate ≥ 10 expected events for A′ kinetic mixing near upper bound
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Batell Pospelov Ritz arXiv:0906.5614

Improvements can be achieved with
I More luminosity (→ Project X)
I Larger detectors
I Sensitivity to new hD decay channels (τ+τ−)

however, τ detector would need to have size comparable to MINOS ND

Joachim Kopp (Fermilab) New physics from neutrino experiments 13



Conclusions
Possible signals of new physics in the neutrino sector:

I Non-standard interactions
I Non-unitary mixing
I Mixing with sterile neutrinos

High-intensity neutrino beams can significantly improve bounds, but
discoveries still require very large new physics effects
Another use of future neutrino detectors:
Search for light, long-lived hidden sector particles (→ Dark Matter?)
An interesting near-future possibility: Emulsion Cloud Chamber (ντ

detector) in the NuMI beam
I Sensitive to non-standard decay π → ντ (down to BR < 10−6)
I ντ detection desirable for optimum coverage of flavor space
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The game of the name

Proton RIFLE Protons for Research at the
Intensity Frontier at Low Energy

PANDAS Proton Accelerator for the Next Decade of
Advancements in Science
Alternatively:
Proton Accelerator with No Decent Acronym So far
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Thank you!
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