Progress on experiments with existing facilities: Neutrinos

Mark Messier Indiana University

4th Project-X Workshop November 9th, 2009 Fermilab

Neutrino oscillations

 Neutrinos of definite flavor do not have definite mass. The flavor eigenbasis is rotated wrt the mass eigenbasis $\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} 1 & & \\ & c_{23} & s_{23} \\ & & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & & s_{13}e^{-i\delta} \\ & 1 & & \\ & -s_{13}e^{i\delta} & & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} \\ -s_{12} & c_{12} \\ & & 1 \end{pmatrix} \begin{vmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$ Interference between mass states means a neutrino produced as a v_{μ} can be detected later as a v_{τ} or v_{e} $P_{\nu_{\mu} \to \nu_{\tau}} = \sin^2 2\theta_{23} \cos^4 \theta_{13} \sin^2 \left(\frac{1.27 \Delta m_{23}^2 [\text{eV}^2] L[\text{km}]}{E[\text{GeV}]} \right)^{0.5}$ $P_{\nu_{\mu} \to \nu_{e}} = \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \sin^{2} \left(\frac{1.27 \Delta m_{23}^{2} [\text{eV}^{2}] L[\text{km}]}{E[\text{GeV}]} \right)$ 1000 2000 3000 L [km]

MINOS What are the parameters of muon neutrino oscillation?

Reconstructed neutrino energy (GeV) Reconstructed neutrino energy (GeV)

848 events observed / 1065 expected $|\Delta m^2| = 2.43 \pm 0.13 \text{ meV}^2$ (5% measurement) $\sin^2 2\theta > 0.90$ (90% CL)

MINOS What are the parameters of muon neutrino oscillation?

 $|\Delta m^2| = 2.43 \pm 0.13 \text{ meV}^2$ (5% measurement) sin²2 θ >0.90 (90% CL)

MINOS Is the total active neutrino flux conserved?

100 events observed / 115 expected (0-3 GeV)

Limits fraction of muon neutrinos converting to sterile neutrinos to less than 68% at 90% CL.

MINOS Do neutrinos convert to anti-neutrinos? $\nu_{\mu} \rightarrow \bar{\nu}_{\mu}$?

The NuMI neutrino beam used by MINOS is a nearly pure muon neutrino beam 91.7% ν_{μ} , 7% $\overline{\nu}_{\mu}$, 1.3% $\nu_{e}+\overline{\nu}_{e}$.

Since MINOS is a magnetized detector it can measure v_{μ} and v_{μ} separately and ask if any of the neutrinos we produced convert to anti-neutrinos.

<u>Observe:</u> 42 ν_{μ} events <u>Expect:</u> 64.6 ± 8.0 (stat.) ± 3.9 (syst.) *w/o oscillations* 57.3 ± 7.6 (stat.) ± 3.6 (syst.) *w/ oscillations same as neutrinos*

No excess: $P(v_{\mu} \rightarrow \overline{v}_{\mu}) < 2.6\%$ [90% C.L]

Do neutrinos convert to anti-neutrinos? $\nu_{\mu} \rightarrow \bar{\nu}_{\mu}$?

The NuMI neutrino beam used by MINOS is a nearly pure muon neutrino beam 91.7% ν_{μ} , 7% $\overline{\nu}_{\mu}$, 1.3% $\nu_{e}+\overline{\nu}_{e}$.

Since MINOS is a magnetized detector it can measure v_{μ} and v_{μ} separately and ask if any of the neutrinos we produced convert to anti-neutrinos.

<u>Observe:</u> 42 ν_{μ} events <u>Expect:</u> 64.6 ± 8.0 (stat.) ± 3.9 (syst.) *w/o oscillations* 57.3 ± 7.6 (stat.) ± 3.6 (syst.) *w/ oscillations same as neutrinos*

No excess: **P(v_µ→v̄_µ) < 2.6% [90% C.L]**

Do anti-neutrinos oscillate in the same way as neutrinos? $P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu}) = P(\nu_{\mu} \rightarrow \nu_{\mu})$?

• As best we can tell, yes [90% CL].

• This is not the optimal setup for measuring anti-neutrino oscillations. Optimal setup is to reverse the horn focus and run with anti-neutrinos as the majority species. That measurement is currently underway with MINOS and will continue until March 2010.

Do anti-neutrinos oscillate in the same way as neutrinos? $P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu}) = P(\nu_{\mu} \rightarrow \nu_{\mu})$?

• As best we can tell, yes [90% CL].

• This is not the optimal setup for measuring anti-neutrino oscillations. Optimal setup is to reverse the horn focus and run with anti-neutrinos as the majority species. That measurement is currently underway with MINOS and will continue until March 2010.

Do anti-neutrinos oscillate in the same way as neutrinos? $P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu}) = P(\nu_{\mu} \rightarrow \nu_{\mu})?$

• Enables ~30% measurement of $\Delta \overline{m}^2$

MINOS Do muon neutrinos convert to electron neutrinos?

7E20 POT in the can. Sensitivity will exceed CHOOZ or provide >90% CL signal

MINOS Do muon neutrinos convert to electron neutrinos?

MINOS Do muon neutrinos convert to electron neutrinos?

7E20 POT in the can. Sensitivity will exceed CHOOZ or provide >90% CL signal

MiniBooNE What produced the excess seen by LSND?

MiniBooNE What produced the excess seen by LSND?

MiniBooNE Could LSND signal be only in anti-neutrinos?

- Excess seen in neutrinos seems not to be reproduced in anti-neutrinos
- No conclusion possible with present statistics
- Situation may be further clarified by SciBooNE and microBooNE data

Double CHOOZ / Daya Bay / Reno Is $\theta_{13} > 0$?

<u>Double Chooz</u>

- Installation of far detector nearing completion by April 2010
- Construction of near lab begins in 2010
- $-\sin^2 2\theta_{13} = 0.06 (90\% CL)$ by 2011
- $-\sin^2 2\theta_{13} = 0.03$ by 2014

<u>RENO</u>

- Civil construction completed.
- Finish installation in 2010
- $-\sin^2 2\theta_{13} = 0.02$ by 2014

<u>Daya Bay</u>

- Excavation ~70% complete
- Halls ready for data taking in summer '11 $sin^2 2\theta_{13} = 0.01$ by 2014

T2K Is θ₁₃>0?

New off-axis neutrino beam directed at 50 kton Super-Kamiokande detector

First beam to T2K target in April 2009 Near detector installation nearing completion Beam line re-commissioning starting now. 120 kW in RCS and 40 kW to T2K

First run through 2010: $sin^2 2\theta_{13} = 0.06$ (90% CL) Ultimate sensitivity $sin^2 2\theta_{13} = 0.006$

sin² 2 θ₁₃ sensitivity

T2K Is θ₁₃>0?

NOvA

What is the mass hierarchy? What can we learn about $\delta_{\text{CP}}?$

- NOvA is a second generation experiment on the NuMI beamline which is optimized for the detection of $v_{\mu} \rightarrow v_{e}$ and $\overline{v}_{\mu} \rightarrow \overline{v}_{e}$ oscillations
- NOvA is:
 - An upgrade of the NuMI beam intensity from 400 kW to 700 kW
 - A 15 kt "totally active" tracking liquid scintillator calorimeter sited 14 mrad off the NuMI beam axis at a distance of 810 km
 - A 220 ton near detector identical to the far detector sited 14 mrad off the NuMI beam axis at a distance of 1 km

NOvA What is the mass hierarchy? What can we learn about δ_{CP} ?

NOvA What is the mass hierarchy? What can we learn about δ_{CP} ?

NOvA construction

CD3b signed 29 October 2009

NOvA What is mass hierarchy? What can we learn about $\delta_{\text{CP}}?$

NDOS = near detector on the surface FD = far detector at Ash River

If $\sin^2 2\Theta_{13} = 0.01$

If $\sin^2 2\Theta_{13} = 0.08$

If $\sin^2 2\Theta_{13} = 0.08$

