RCS design

Valeri Lebedev AAC Meeting November 16-17, 2009

Outline

- Objectives for RCS design
- Logic behind parameter choices
- Technical description

Objectives & Challenges

- Objectives
 - Beam acceleration from 2 to 8 GeV
 - Support
 - 2 MW in MI at 60 to 120 GeV (140 280 kW)
 - 8 GeV program with fast extracted beam (≥100 kW)
 - Look for a solution being less expensive than pulsed SC linac
 - Look into possible future upgrades
- Challenges
 - Beam current is ~5 times of Booster \Rightarrow Space charge, instabilities, RF, ep
- Booster problems to be avoided
 - No transition crossing
 - No laminations seen by beam \Rightarrow smaller $Z_{\parallel},\,Z_{\perp}$
 - Zero Disp. in cavities \Rightarrow No SB resonance

RCS Design Choices

- Circumference, $C = C_{MI}/6$
 - 6 injections to fill MI
- High periodicity FODO
- Racetrack
 - Two long straights
 - Dispersion zeroing with missed dipole
- Acceptance matches MI acceptance
 - 10% allowance for ϵ growth
- 2 harmonics RF system
 - Space charge mitigation
 - Beam stability
- High injection energy helps with Space Charge and Instabilities
 - Small size of vacuum chamber

Energy, min/max, GeV	2/8
Repetition rate, Hz	10
Circumference, m (MI/6)	553.2
Tunes	18.43
Transition energy, GeV	13.36
Beam current at injection, A	2.2
Harmonic number	98
Max. RF voltage, (V ₉₈ /V ₁₉₆) MV	1.6/0.7
95% n. emittance, mm mrad	22
Space charge tune shift, inj.	0.07†
Norm. acceptance, mm mrad	40
Injection time for 1 mA, ms	4.3
Linac energy cor. at inject.	1.2%
RF bucket size, eV s	0.38

† KV-like distribution, BF=2.2

- β -functions are blown-up in injection region reduction of foil heating
 - 6 half cells are used for injection region
- Two types of quadrupoles with the same integral strength
 - Large aperture quads for injection & extraction

Thu Sep 17 14:51:49 2009 OptiM - MAIN: - C:\VAL\Optics\MuonCollider\Synchrotron\RCS_withFoil_Inj.opt

Optics (continue)

- Straight line assignments
 - Injection, extraction, scraping
 - RF
- Vacuum chamber radius, *a* = 21.3 mm (internal)
 - 7 mm allowance for orbit correction

Thu Sep 17 14:55:45 2009 OptiM - MAIN: - C:\VAL\Optics\MuonCollider\Synchrotron\RCS_withFoil_Inj.opt

Vacuum Chamber

- Competing effects are
 - Shielding and distortion of dipole bending field by eddy currents excited in the vacuum chamber
 - Vacuum chamber stability under atmospheric pressure
 - Vacuum chamber heating by eddy currents
 - Transverse impedance due to wall resistivity
 - Ring acceptance
- The compromise resulted in
 - Round stainless steel vacuum chamber with radius of a=22 mmand wall thickness of d = 0.7 mm
 - Inside quads of injection and extraction regions: a=43 mm d=1 mm
 - No limitations on the chamber thickness outside dipoles and quads
- Ring acceptances and beam emittance:
 - 85 mm mrad limited by vacuum chamber size
 - 40 mm mrad limited by scrapers
 - 22 mm mrad 95% norm. beam emittance

Limitations on Vacuum Chamber Design

- Shielding and distortion of the dipole bending field by eddy currents excited in the vacuum chamber $\Delta B_{y}(0, y) = iB_{AC} \left(1 + \frac{\pi^{2}}{12} + \frac{\pi^{4}}{240} \frac{y^{2}}{a^{2}} + \dots \right) \frac{ad}{\delta^{2}},$
 - Dipoles: $|\Delta B/B|_{\text{max}} = 8.5 \times 10^{-4}$ @16 ms
 - Quads approximately half of the dipole effect
 - Delayed quad wave form by \sim 70 µs
- Vacuum chamber stability under atmospheric pressure
 - Compression: 3.1 N/mm²
 - Bend for ∧a/a=0.02: 8.9 N/mm²
 - Yield stress : 200 N/mm²
- Vacuum chamber heating by eddy currents ($\sim a^3$)
 - dP/dz=10 W/m
 - $-\Delta T$ =15 K for convective air cooling with heat transfer of 10⁻³ W/cm²/K

$$\frac{dP}{dz} = \frac{\pi\sigma da^3 \omega_{ramp}^2}{c^2} B_{AC}^2$$

 $\sigma_{cmpr} = P_{atm} \frac{a}{d}$

$$\delta = \frac{c}{\sqrt{2\pi\sigma\omega_{ramp}}} << a$$

$$\sigma_{bend} = \frac{9}{4} P_{atm} \frac{\Delta a}{a} \left(\frac{a}{d}\right)^2$$

Vacuum Chamber Impedance

- Transverse impedance due to wall resistivity (~a⁻³) $Z_{\perp}(\omega) = Z_0 \frac{c^2}{4\pi^2 \sigma \omega a^3 d}$
 - Z_{\perp} and dP/dz are related inversely proportional
 - No dependence on vacuum chamber parameters

$$Z_{\perp}(\omega)\frac{dP}{dz} = \frac{Z_0}{4\pi}\frac{\omega_{ramp}^2}{\omega}B_{AC}^2$$

$$\delta = \frac{c}{\sqrt{2\pi\sigma\omega}}$$

 $\sqrt{ad} \ge \delta \ge d$

AAC, November 16-17, 2009 - Valeri Lebedev

Dipoles

- Small aperture ⇒ Compact dipole
- Sagitta 1.7 cm

Parameter	Unit	Value
Number of magnets		100
Peak field	Т	0.87375
Field at injection	Т	0.2184
Magnet gap	mm	44
Good field area diameter	mm	40
Field homogeneity		0.02 %
Effective length	m	2.13216
Peak current	А	667 A
Number of turns/pole		24
Copper conductor	mm x mm	12.5 x 12.5
Conductor cooling hole diameter	mm	7
Number of pancake coils/pole		2
Lamination material		M17
Lamination thickness	mm	0.35
Inductance	mH	25
DC resistance	Ohm	0.021
Stored energy	kJ	5.47
Av. Power losses (no eddy current)	kW	4.3
Peak inductive voltage	V	390
Number of cooling circuits/magnet		1
Water pressure drop	MPa	0.5
Water flow	l/min	2.8
Water temperature rise	C°	22

Quadrupoles

 Large and small quads 	Parameter	Unit	Normal quad	Large quad
have the same field	Number of magnets		122	8
integral	Peak field gradient	T/m	17.65	14.65
Integral	Field gradient at injection	T/m	5.528	4.589
 Large guads 	Pole tip radius	mm	25	45
$ \frac{1}{4}$ in injection region	Good field area diameter	mm	40	75
	Field nonlinearity (2D)		0.03 %	0.03 %
 4 in extraction region 	Effective length	М	0.69	0.794
	Peak current	А	672	2 A
100.0	Number of turns/pole		7	19
90.0	Copper conductor	mm x mm	10 x 10	10 x 10
80.0	Conductor cooling hole diameter	mm	5	5
70.0-	Number of coils/pole		1	1
10.0	Lamination material		M17	M17
60.0-	Lamination thickness	mm	0.35	0.35
50.0-	Inductance	mH	1.15	3.12
40.0-	DC resistance	mΩ	12	40
	Stored energy	J	260	700
30.0-	Av. power losses (no eddy currents))	kW	2.0	6.7
20.0-	Peak voltage	V	40	110
10.0-	Number of cooling circuits/magnet		1	4
	Water pressure drop	Mpa	0.5	0.5
⁰ .0.0 10.0 30.0 50.0 70.0 90.0 110.0 130.0 X [mm]	Water flow	l/min	1.9	1.6
	Water temperature rise	C°	16	11

Resonance Driving of Dipoles and Quads

- Dipoles and quads of each cell have a resonance circuit compensating their inductive impedance
 - 50 standard + 2 special cells (one for each straight line)
 - each is tuned to 10 Hz
 - Total power ~1.5 MW
 - Maximum voltage to ground 600 V
- Similar to the Booster

Beam Acceleration

RF System

- Dual Harmonic RF system,
 - At injection $V_2=0.5 V_1$
- 10 Bunches extraction gap
 - Set by required length of MI extraction gap
- Beam loading is serious issue
 - 1.6 MV beam induced voltage (at resonance)
- Longitudinal emittance is blown up to ~0.6 eV s to match to MI RF bucket
 - Can be excited by quadrupole damper (same as in Booster)

	1-st harmonic	2-nd harmonic
Harmonic number	98	196
Maximum voltage, MV	1.6	0.7
Minimum voltage, kV	20	10
Frequency sweep, MHz	50.33-52.81	100.66 - 105.62
Number of cavities	16	10
Shunt impedance, $k\Omega$	100	100

Injection-Extraction Straight

Cell N	Assignment
132	TBD
4	Injection
6	Primary collimators
7	Vertical and Horizontal collimators
8	TBD
9	Vertical and Horizontal collimators
10-11	Extraction kickers
12	TBD
13	Extraction septum

- Doublet focusing for injection straight
 - It takes space of 6 FODO half cells
- Increased aperture for 8 quads
 - 4 in injection
 - 4 in extraction

Thu Sep 24 13:53:25 2009 OptiM - MAIN: - C:\VAL\Optics\MuonCollider\Synchrotron\RCS_withFoil_Inj.opt

Injection

- Strip injection through 600 μg/cm² graphite foil
- Small linac current (1 mA) ⇒ 2200 turn injection (11 for Booster, 1000 for SNS)
- B2 small field to avoid H⁻ stripping (2 kG)
- B3 Large field to strip H^- to H^0 (-8.3 kG)
- Stripped electrons carry ~100 W beam power and have to be directed to the electron dump

Transverse Painting

- Transverse painting objectives
 - Paint K-V like distribution
 - Minimize number of secondary passages through foil
- Major parameters
 - Linac emittance 0.5 mm mrad (rms, norm.)
 - RCS beam emittance 22 mm mrad (95%, norm.)
 - Linac α and β functions are 0.345 of RCS ones
- X-Y painting by CO displacement
 - Closed 4 corrector bumps in each plane
 - Independent control for X & θ on foil

Simulation Results for Transverse Painting

- Final distribution is close to the KV-distribution
- 50 secondary passages per particle
 - 2.2 mm⁻² per particle
- 420 µg/cm² foil is tilted by 45 deg. to increase cooling due to black body radiation
 - T_{max} = 1500 K
 - $\begin{array}{rl} & \delta \text{-electrons remove} \\ & \sim 25\% \text{ of heating} \end{array}$

AAC, November 16-17, 2009 - Valeri Lebedev

Injection Loss

- Total injection loss ~4%
 - ~2% miss the foil
 - ~0.5% are not completely stripped in the foil
 - 0.15% are single scattered in the foil
 - ~1% are outside of 40 mm mrad RCS acceptance
- In normal operating conditions it results in the heat load
 - injection beam dump ~3 kW
 - collimation system ~1.5 kW
- Prudent design (confirmed by SNS experience) would have both the injection waste beam absorber and the collimation system designed to handle 10% or 8.5 kW

Injection Dump

- Injection dump is located in the tunnel
- It requires considerable radiation shielding

Longitudinal Painting

- Longitudinal painting is performed by momentum offset of linac beam
 - σ_p=5·10⁻⁴,
 - $\Delta p/p = 7.10^{-4},$
 - T_{inj}=14.6 ns (73%)
- Additionally, Linac has to compensate the RCS energy variation during injection (4.3 ms)
 - ∆E/E =1.2%
 - \Rightarrow Bunching factor = 2.2

Extraction

- Two kickers of 2.3 mrad each (±25kV, filling time 90 ns)
- Quads displacements make vertical closed bump
 - Q11 = -4.8 mm, Q12 = -6.39 mm, Q14 = 9.84 mm

RCS versus Pulsed Linac

• RCS

Project X

- Less expensive
- Injection at smaller energy \Rightarrow Easier to manage injection loss
- Limited upgrade potential
 - Up to ~1 MW @15 Hz & 2-3 ns (MC) feasible with increased acceptance
- Linac
 - Easier to upgrade
 - to 4 MW power proton driver for MC
 - + to ~20 GeV recirculator for neutrino factory
 - Many injections per cycle if foil strip-injection is used (10 Hz)
 - Requires Recycler ⇒ 8 GeV final energy
 - An upgrade will require beam current increase: $1 \rightarrow \geq 20$ mA
 - \Rightarrow 2 GeV program discontinue or
 - building another 2 GeV frontend!!!

Conclusions

- RCS looks as a good choice to accelerate from 2 to 8 GeV
 - Less expensive than pulsed SC linac
 - ~287 M\$ versus ~355 M\$ (no escalations)
- It has considerable upgrade potential but cannot meet 4 MW required by Muon Collider
- Choice between RCS and Pulsed linac need to be done. It will be driven by
 - Cost & Upgradability

Backup Viewgraphs

AAC, November 16-17, 2009 – Valeri Lebedev

Page 25

Vacuum

- Vacuum chamber
 - 10⁻⁷ Torr or better (beam loss, ep instabolity)
 - No baking
 - Secondary emission suppression (TiN or carbon film)

V	Right angle valve		lon gauge			
\bigcirc	lon pump	-\\\\	Bellows			
$\mathbb{P}^{\mathbb{Q}}$	Pirani gauge					(PG)
	QUAD		C	ORR	DIPOLE	

Optics and Orbit Correction

- Corrector pack near each quad: S and D coils
 - Dipole corrector near each quad (h F, v D)
 - 4 fast correctors in each plane for injection painting
 - Two families of sextupoles
 - Partial chromaticity correction: from -25 to -(10 ÷ 15)
 - No dynamic aperture limitation
- **Optics correction**
 - Additional coils in all guads for optics correction
 - F and D families (±0.25 tune correction) (JGdL=1.1 kG)
 + 36 separate optics correction quads (JGdL=2.2 kG)
 - 12 Skew-guads (coupling & vertical dispersion)

Name	Quantity	L[cm]	$B_{H}[G]$	$B_V[G]$	S[G/cm ²]
Regular H	50	20	550	-	200
Regular V	48	20	-	550	200
Straight line H	12	20	550	-	-
Straight line V	14	20	-	550	-
Injection	4	30	1000	1000	_

Optics Cell

Name	S[cm]	L[cm]	B[kG]	G[kG/cm]	S[kG/cm/cm]
qF	65.9	65.9	0	1.7675	0
o2	85.9	20			
sF	105.9	20	0	0	0.185
01	135.9	30			
bD	349.116	213.216	8.7375	0	0
0	419.116	70			
qD	485.016	65.9	0	-1.7634	0
o2	505.016	20			
sD	525.016	20	0	0	-0.324
01	555.016	30			
bD	768.232	213.216	8.7375	0	0
0	838.232	70			

Collimation and Instrumentation

- Collimators
 - Two stage
 - Located in the injection-extraction straight line
 - Positioning in the other line is also discussed
 - Choice is determined by loss scenario
- Instrumentation
 - Standard set of FNAL instrumentation (BPMs, BLMs, ...)
 - Instrumentation for the injection region
 - Will be based on SNS experience

Project X Stripping on Carbon Foil

