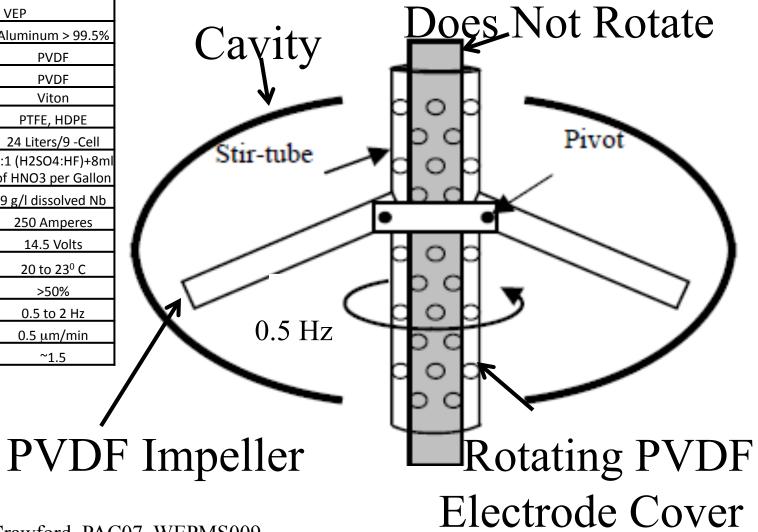


Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE) Vertical Electropolish (a) Cornell

Zachary A. Conway Presenter: Georg H. Hoffstaetter Cornell University Laboratory for Elementary-Particle Physics

Vertical Electropolish at Cornell

• Outline


- What is Vertical Electropolish? How does it work?
- Why use vertical electropolishing?
- The status of vertical electropolishing 9-cell cavities
 a Cornell.
- Summary and Plans
- Collaborators:
 - Hasan Padamsee
 - Curtis Crawford

What is Vertical Electropolish?

Aluminum Electrode

Parameters for VEP	
Cathode	Aluminum > 99.5%
Stir-Tube	PVDF
Paddles	PVDF
Seals	Viton
End Groups	PTFE, HDPE
Electrolyte	24 Liters/9 -Cell
Electrolyte Composition	9:1 (H2SO4:HF)+8ml of HNO3 per Gallon
Maximum Use	9 g/l dissolved Nb
Current	250 Amperes
Voltage	14.5 Volts
Temperature	20 to 23 ⁰ C
Stir-Tube Transparency	>50%
Stir Frequency	0.5 to 2 Hz
EP Rate at Equator	0.5 µm/min
Ratio EP Rate iris/equator	~1.5

H. Padamsee & A.C. Crawford, PAC07, WEPMS009

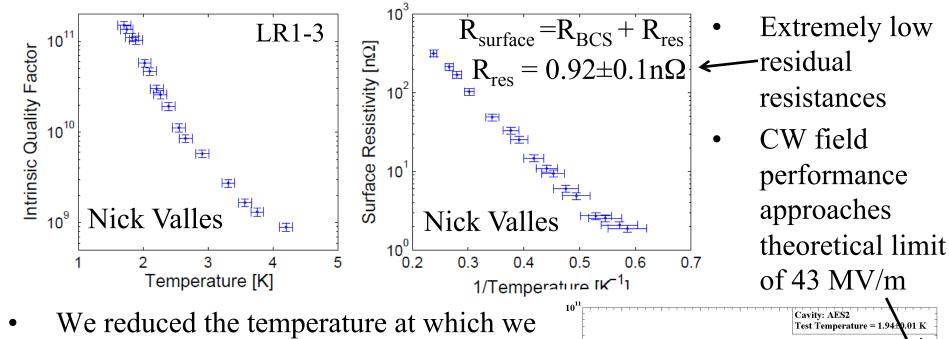
TTC meeting 19-22 April 2010, FNAL

What is vertical Electropolish?

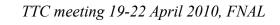
Horizontal Electropolish FNAL/ANL Joint Processing Center

M.P. Kelly et al, LINAC08, Pg. 839, THP026

Vertical Electropolish


TTC meeting 19-22 April 2010, FNAL

Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE) Why Vertical Electropolish?


- Vertical electropolishing has the following benefits when compared to horizontal electropolishing
 - Eliminates rotary acid seals
 - Eliminates sliding electrical contact _
 - Eliminates the cavity vertical/horizontal position control fixtures
 - Simplifies the acid plumbing/containment, eliminates the acid storage barrels and recirculation systems
 - The outside of the cavity is actively cooled, providing better temperature control of the polishing reaction.
 - Flexible, thin walled or heat treated, cavities do not sag during polishing ____
 - Acid is only used once, prohibits accumulation of contaminats ____
 - Lower capital equipment costs
 - Fewer parts reduces the risk of Sulfur and other contaminants building-up in the system, which may cross contaminate the cavities resulting in field emission or other RF losses.
- But the electrolyte must be changed more frequently (after about 100 microns of material • removal).
- For large amounts (e.g. 200 microns) of material removal the cavity orientation must be rotated periodically, to balance the up-down polishing asymmetry.
- Vertical electropolishing has produced several high performance single-cell and one 5-cell cavity.

Why Vertical Electropolish? Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE)

polish to 20-25 C, was 30-40 C.

- We reduced the agitation of the electrolyte during the polish.
- We have had several good single cell results

♥ 10¹

109

10

15

20

E_{acc} (MV/m)

25

30

35

5

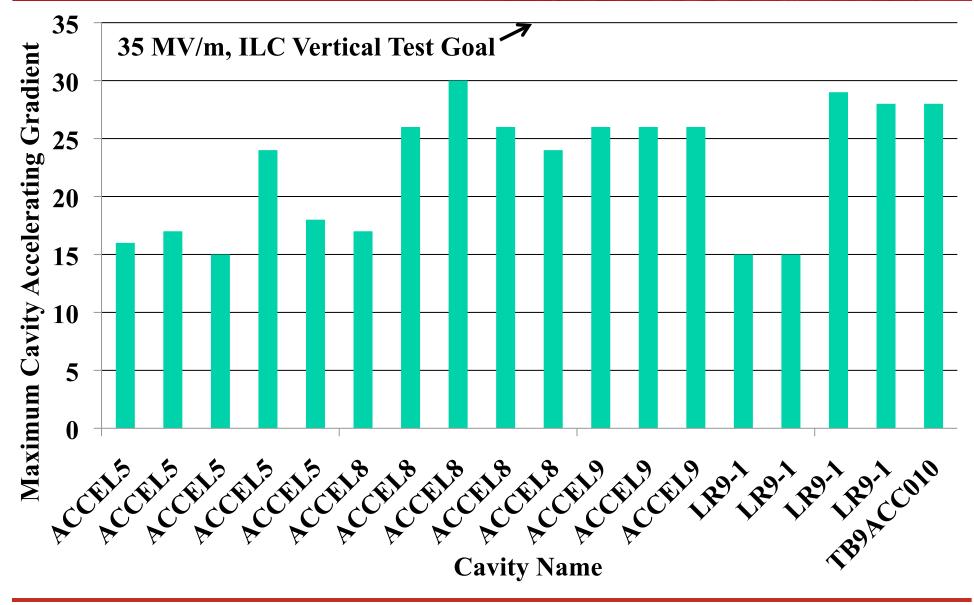
45

.01 K

40

H-

H

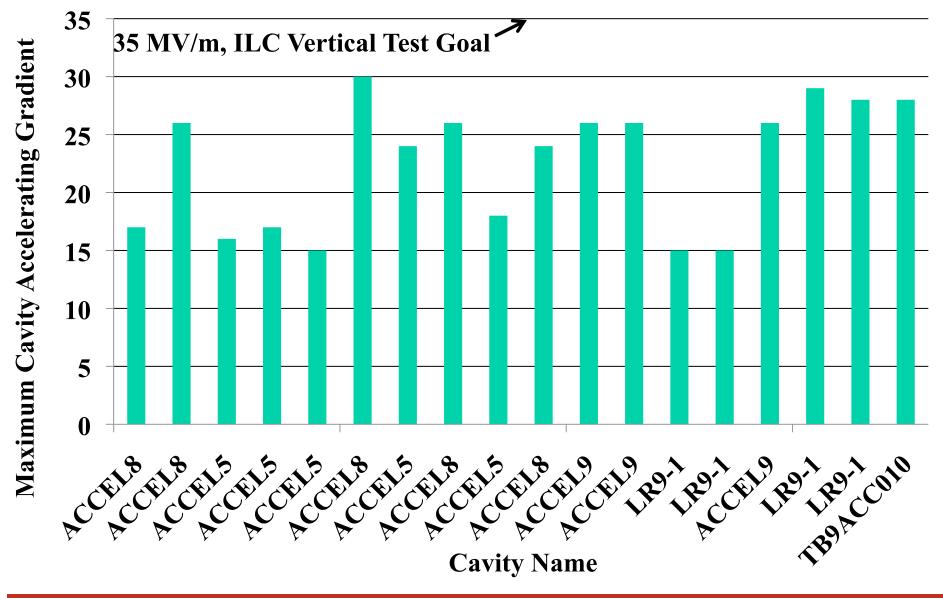

9-Cell VEP Status

- We are working toward a procedure which will meet the ILC vertical test specifications of 35 MV/m with a Q of 1E10 in 9-cell cavities.
 - So far we have been limited to gradients below 30 MV/m by surface defects
 - We are working on a technique to remove these defects via barrel rolling with vertical electropolishing providing the final surface polishing
 - This technique was successfully employed with a 9-cell reentrant cavity

9-Cell VEP Status

TTC meeting 19-22 April 2010, FNAL

- 1-cell, 1.3 GHz cavity, World record Eacc, high Q
 - Re-entrant shape
 - TESLA-like shape (Niowave and AES)
- 5-cell, 1.3 GHz, Eacc = 37 MV/m
 - TESLA-like shape
- 9-cell ILC cavity, Eacc 25 30 MV/m
 - Quench limited, i.e. by defect
 - Individual cells reach 37 MV/m (also quench)
- Thermometry in near future (being prepared by Dave Meidlinger and Eric Chojnacki)



- Vertical electropolish is effective in small cavities.
- We are now tweaking the procedure to optimize for 9-cell ILC cavities.
- We have made significant progress after:
 - Lowering the process temperature
 - Reducing the electrolyte agitation during the procedure
- We are now working on
 - Optimizing the amount of electrolyte agitation (e.g. stirring) during cavity polishing
 - Ultrasonic agitation
 - Optimization of temperature
 - Improving our process control, e.g. rotation speed for agitation, current and voltage monitoring, etc.

9-Cell VEP Status As Time Goes On...

TTC meeting 19-22 April 2010, FNAL