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We continue to deepen our understanding of what “EP” 
does to niobium surfaces and apply that knowledge to 
optimize the process.

We want to understand the scale-specific details of 
surface leveling.

We pursue a reliable, cost-minimized process for JLab, ILC 
and other applications.
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Diffusion-limited  access of F- to the surface produces “best” polishing

Local temperature, flow  and  
electrolyte composition affect the 
local F- gradient

• Anodization of Nb in H2SO4 forces growth of 
Nb2O5.

• F- dissolves Nb2O5.
• These competing processes result in current flow 

and material removal.
• Above a certain anodization potential, the 

reaction rate plateaus, limited by how fast fresh 
F- can arrive at the surface. (diffusion-limited)

• In this steady-state case, this Nb2O5 layer is a 
“compact salt film” with specific resistivity.

• The thickness of the salt film increases with 
applied potential, although the steady-state 
current does not change (plateau).

• In the true diffusion-limited circumstance, 
material removal is blind to crystallography 
(avoids crystallographic etching).

• The diffusion coefficient sets a scale for the most 
effective leveling 

Summary
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We have successfully characterized the 
• temperature-dependent viscosity of the EP fluid
• diffusion constant of F- in the fluid

This allows us to calculate the scale of most effective leveling.

We have also clearly identified that a parallel etching process is 
present at higher temperatures – this works against obtaining  
the smoothest surfaces, yielding a reaction rate that is spatially 
varying with local chemical potential – grain orientations and 
lattice stresses.
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I-V curves of Nb electropolishing at 
different temperatures with RDE 
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Strong evidence for temperature-dependent electrochemical 
etching in parallel with the diffusion-limited process.  For analysis, 
we must separate these current contributions.
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Excellent linear fit provides 
definitive  evidence of a 
diffusion-limited process.  
Knowing  ν and c yields D.

RDE measurements

cF = 2.67×10-3 mol/cm3
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cF = 2.67×10-3 mol/cm3

Determining Electrolyte Physical Properties
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Estimation of diffusion layer thickness in 
1:10 HF/H2SO4 Electrolyte at different temperatures 

cF = 2.67×10-3 mol/cm3

There exists a F- concentration 
gradient within the 10-20 µm away 
from the surface.

On this scale, peaks are 
dissolved much faster 
than valleys.

2 µm scale structure should vanish much faster that 40 µm structure
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KEK fine CBP fine grain sample 2
KEK fine CBP large grain sample 9
KEK fine CBP single crystal sample 13
KEK fine CBP large grain sample 9 after EP
KEK fine CBP single crystal sample 13 after EP
KEK fine CBP fine grain sample 2 after EP

RMS~200nm

AFM Measurement ( 50µm*50µm)

RMS~7nm

RMS~40nm

With “standard”1:10 HF/H2SO4
Electrolyte at 30°C Nb 
crystallography affects the 
polishing effectiveness.

With identical starting 
topography from CBP, given 
identical 100 min “EP” at 30°C, 
single-crystal material was 
significantly smoother.

Evidence for a significant etching 
activity at 30°C, consistent with 
RDE analysis and visual 
experience.

Not all Nb “EPs” the same
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Avoid sulfur at the cathode
• Most commercial electropolishing applications attempt to maximize the surface 

area of the cathode to avoid process complications (power cost and chemistry).
• In contrast to this, typical horizontal cavity EP circumstances have a 

cathode:anode active area ratio of 1:10. (Worse if “masking” is applied.)
• Result is high current density on the cathode and necessary high overpotential

to drive the current.  This risks driving other chemistry, such as S reduction.
• ~5.5 V polarization potential @ cathode 
to drive 300 mA/cm2 =~30 mA/cm2 at anode.

SO4
2- + 8 H+ + 6 e- → S + 4 H2O  

may proceed if cathode overpotential is too high
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Implications:
• We should expect the best micropolishing for topographic 

features smaller than ~ 10 µm, so start with surfaces that are 
consistently smooth to this scale: e.g. CBP.

• This process we call “EP” also has a temperature-dependent 
etching  process present.  So, minimize the temperature as 
much as is practical (and minimize lattice strains).

• Reduce or eliminate sulfur production at the cathode by 
minimizing cathode current density and improving the 
reaction kinetics for hydrolysis at the cathode.

(1:10 HF/H2SO4 Electrolyte with Nb)
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If the objective is maximally smooth 
surfaces without sulfur particles :  
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