$\lambda/4$ and $\lambda/2$ Cavity Status Report Performance and Problems List

A. Facco INFN Legnaro

A. Facco (INFN) - TTC meeting, FERMILAB 2010

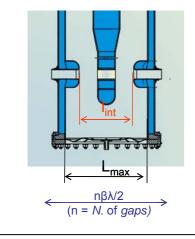
Where are we?

- QWRs
 - very successful from β ~0.02 up to β ~0.15
 - used in many linacs since many years
 - advanced state of development
 - new projects coming
- HWRs (coaxial)
 - steering free substitute of QWRs
 - lower cost equivalent of 2-gap Spoke cavities
 - used only in 1 linac until now
 - early state of development
 - new projects coming

Treatments applied

- BCP
- EP
- HPR

. . .

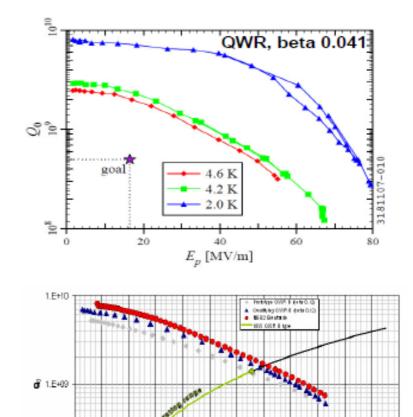

- grinding
- tumbling (Cu/Nb)
- clean room assembly
- •
- all that is applied to high beta (usually with some delay)
- we have also common vacuum

State of the art in QWRs

• Maximum fields in QWRs at **4.2 K** (selection)

	f	beta	Ep	Вр	Ea	Vmax	Leff	L max	Ea Norm.*	material	year	Vacuum	EP
			MV/m	mT	MV/m	MV	m	m	MV/m				
ANL	109	0.15	48	88	15	3.75	0.25	0.35	10.7	Nb	2009	Separate	Y
TRIUMF	108	0.07	55	110	11	2	0.18	0.18	11.1	Nb	2002	Common	N,Y
TRIUMF	141	0.11	48	97	11	1.8	0.18	0.18	10.0	Nb	2009	Common	Ν
MSU	81	0.041	67	118	10	1.8	0.18	0.18	10.0	Nb	2009	Separate	Ν
IPNO	88	0.12	60	110	11	4.4	0.41	0.38	11.6	Nb	2005	Separate	Ν
CEA	88	0.07	55	96	11	2.6	0.24	0.23	11.3	Nb	2009	Separate	Ν
INFN	80	0.055	55	110	11	2	0.18	0.18	11.1	Nb	1998	Common	Ν
INFN	80	0.047	58	115	11	2	0.18	0.18	11.1	Nb	2000	Common	Ν
INFN	160	0.11	55	110	11	2	0.18	0.18	11.1	Nb/Cu	1998	Common	-

* Ea norm =Vmax/Lmax


- "Typical best" performances at ~4.2K

- max E_p: ~67 MV/m
- max B_p: ~118 mT
- max E_a : ~11.6 MV/m
- max operation E_{a(norm)} : ~7 MV/m
- Remark: similar performances for
 - BCP and EP
 - common and separate vacuum
 - bulk and sputtered Nb

QWR recent achievements

1.E+08 + п

- Max E_p, B_p
 - MSU 80 MHz cavity at 2K:
 - $B_p \sim 80 \text{ MV/m}$, $B_p \sim 160 \text{ mT}$ at
 - Close to β ~1 cavities results
 - QWR operation at 2K is becoming interesting
- Q-slope processing
 - 120 °C baking in IPNO 88 MHz QWRs
 - reduction of Q-slope
 - ×2 Increase of Q at high field
 - now documented also in QWRs

Limiting problems in QWRs

- **1. Q-slope** \Rightarrow operation gradients limited by high rf power dissipation
 - possible remedies:
 - 120 K baking can reduce the slope
- **2.** Mechanical instabilities in lower- β cavities \Rightarrow cavity phase unlock
 - possible remedies and drawbacks:
 - overcoupling
 - limited by rf system and rf power cost
 - mechanical damper:
 - vibrations reduced in amplitude but not eliminated completely
 - VCX
 - limiting operation gradient
 - adding complexity and cost (electronics, cryogenics, maintenance,...)
 - piezo
 - not yet implemented satisfactorily in operating QWRs

3. Beam steering

- possible remedies:
 - beam axis misalignment
 - beam port shaping

Latest trends in QWRs

- Using large cavities and low frequency also for β~0.1 QWRs
 - larger longitudinal acceptance, larger aperture, larger energy gain...
 - cavity more expensive, but less cavities are needed
 - more convenient when Rf system cost is dominant (e.g. for high current beams)

Remark: good perspectives for Nb sputtering in QWRs

- sputtering easier in large cavities
- cost saving vs. bulk Nb in cavity material and magnetic shielding
- sputtering have shown better results at lower frequencies

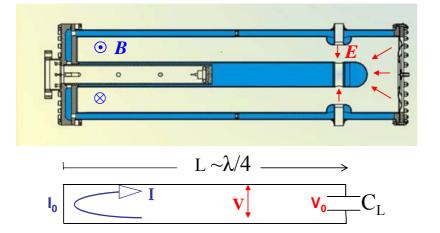
Main ongoing projects with QWRs

- New accelerators under construction:
 - Spiral 2 (Ganil, France)
 - REA3+REA12 (MSU, USA) 47 QWRs, 80.5 MHz
 - HIE –ISOLDE (CERN, CH)

40 QWRs, 88 MHz

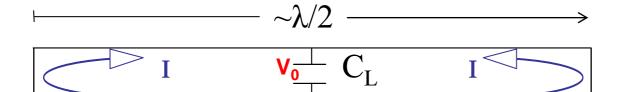
- 32 QWRs, 101 MHz (Nb/Cu)

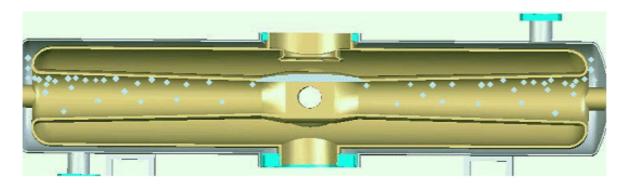
- In preparation
 - FRIB (MSU, USA)


112 QWRs, 80.5 MHz (+ 222 HWRs)

- Recently upgraded, or under upgrade, with new cavities
 - ISAC3 (TRIUMF, Canada)
 - Atlas (ANL,USA)
 - Srf linac (IUAC, India)
 - ALPI (LNL, Italy)

20 QWRs, 107 MHz 7 QWRs, 109 MHz 16 QWRs, 97 MHz 4 QWRs, 80 MHz


- Existing accelerators with superconducting QWRs
 - 6 heavy ion linacs in operation
 - 3 dismantled

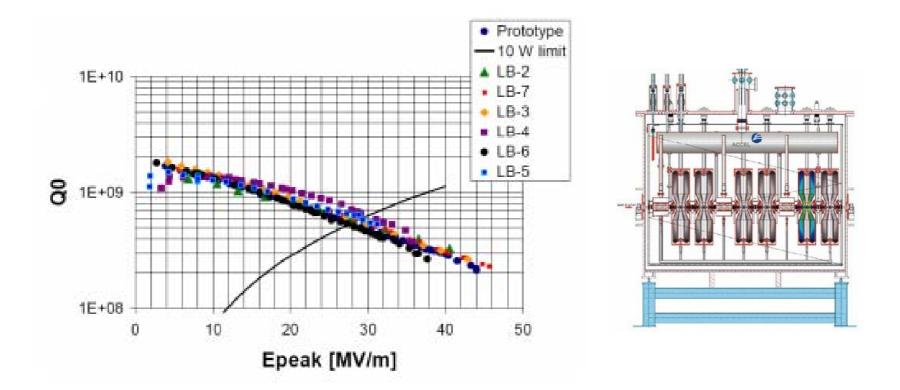

QWRs vs. HWRs

$$P_{HWR} \sim 2 P_{QWR}$$

...but steering free!

State of the art in coaxial HWRs

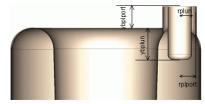
• Maximum fields in QWRs at 4.2 K (selection)


	f	beta	Ep	Вр	Ea	Vmax	Leff	Lmax	Ea norm*	material	year	Vacuum	ΕP	HPR
	MHz		MV/m	mT	MV/m	MV	m	m	MV/m		-			
ANL	170	0.27	29	78	10	3	0.3	0.35	8.6	Nb	2004	separate	Y	Y
ANL	355	0.12	57.6	93.6	18	1.26	0.07			Nb	1991	separate	Ν	Ν
ACCEL/R	176	0.09	45	95	15.5	1.5	0.099	0.18	8.3	Nb	2006	separate	Ν	Y
INFN	352	0.31	31	82	7.9	1.8	0.224	0.224	7.9	Nb	2004	common	Ν	Ν
INFN	352	0.17	39	81	6.8	1.2	0.18	0.18	6.8	Nb	2006	common	Ν	Ν
Juelich	160	0.11	26.5	66	6.3	1.3	0.21	0.18	7.2	Nb	2004	separate	Ν	Y
MSU	322	0.285	27	74	7.1	1.7	0.24	0.24	7.2	Nb	2002	separate	Ν	Y

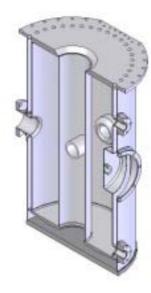
- "Typical best" performances at ~4.2K
 - $\max E_p \approx -57 \text{ MV/m}$
 - − max B_p: ~95 mT
 - $\max E_{a(norm)}$: ~8.6 MV/m
 - max operation $E_{a(norm)}$: ~5 MV/m
- Remarks:
 - Very low statistics, mostly from single measurements, no recent results

in a cavity of 1991!

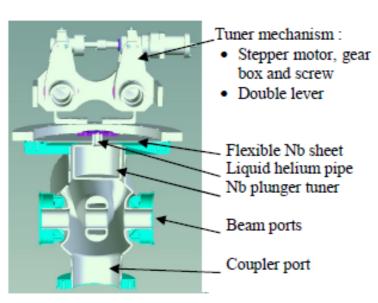
HWR recent achievements


No recent achievements, but we should mention the SARAF cavities test which demonstrated the feasibility of a HWR linac (2006)

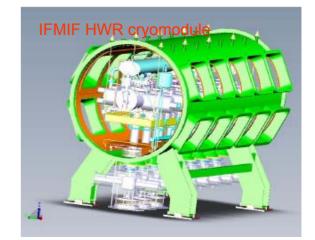
Limiting problems in HWRs

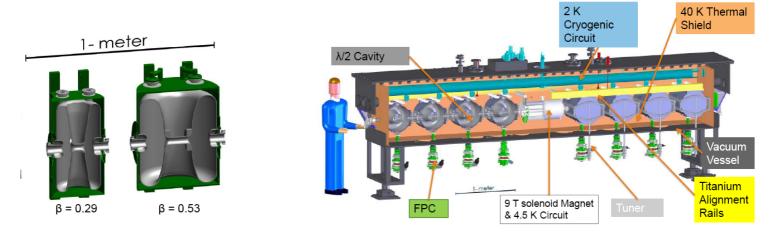

- **1.** Lower performance than QWRs ⇐ less R&D until now
 - Let us wait for the imminent FRIB, IFMIF and SARAF HWRs
- **2. Q-slope** \Rightarrow operation gradients limited by high rf power dissipation
 - possible remedies:
 - 120 K baking can reduce the slope
- 3. Q degradation from test to linac cryostat
 - only 1 cryostat until now: too early to draw conclusions
- 4. Limited accessibility to inner surface for HPR
 - solutions:
 - Add large openings at the equator for coupler or for removable tuner
 - Add extra ports at the shorting plates for HPR

Limiting problems in HWRs (cont.)


- **5. Tuning:** stiff HWRs are hard to tune, soft HWRs have mechanical instabilities. Tuners are either heavy or slow, and require big forces.
 - possible solutions:
 - LNL welded membrane side tuner
 - small tuning range
 - IPNO plunger tuner
 - never tested in HWRs
 - IFMIF removable side tuner
 - not yet tested

IPNO type plunger tuner


LNL membrane side tuner



IFMIF removable side tuner

Latest trends in HWRs

- Using HWRs in horizontal position
 - easy to position and align
 - rf coupler from the bottom in vertical position
- Using HWRs at rather high beta
 - β =0.53 in the FRIB driver linac
- Using HWRs (and maybe QWRs) at 2K

FRIB HWRs and β =0.53HWR cryomodule (courtesy of MSU-NSCL)

Main ongoing projects including HWRs

New accelerators under construction:

- IFMIF-EVEDA (EU-JA)
- SARAF (SOREQ, Israel)
- 8 HWRs, 175 MHz (125 mA cw!) 44 HWRs, 176 MHz

- In preparation
 - FRIB (MSU, USA)
 - IFMIF (EU-JA)

222 HWRs , 322 MHz (+112 QWRs) 84 HWRs, 175 MHz

- Existing HWR accelerators
 - SARAF phase 1

6 HWRs, 176 MHz

Conclusions

- QWRs are nowadays built and treated with similar techniques as β~1 cavities
- They perform not so far from β~1 cavities, taking into account geometrical factor and operation temperature
- Differently from β ~1 cavities, however, they all suffer of strong Q-slope, at least at 4.2K
- BCP and EP, common and separate vacuum, bulk and sputtered Nb seem to bring to equivalent performance in QWRs, at least at 4.2K
- HWRs did not perform as good as QWRs until now, because of much less development done. No fundamental reason for that: the next HWRs under development for the new projects are expected to reach the performance of QWRs
- The 2K era is coming also for QWRs and HWRs: will they fill completely the gap still present in performance with the β ~1 cavities?

Open questions in QWRs and HWRs

- Can we live without VCX and piezos?
- Can we live without EP in QWRs and HWRs?
- Why common vacuum is looked suspicipusly since the common vacuum linacs are performing as well as separate vacuum ones?
- How close is the sputtering era for QWRs?
- When is it really necessary to use HWRs instead of QWRs?
- Is Beam Port shaping suitable to correct steering in QWRs?
- Do we have a good tuner for HWRs?

moreover:

• Can we find a common definition of gradient?