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Quantification of Q0 
requirements for cavities 
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Outline 

minimize cost (construction +operational) 

Reduce cryo-power 
Cavity 

frequency 
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Operating 
temperature 
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Operating 
gradient 
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preparation 

choice 
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Note: Particular importance for CW SRF linacs, e.g. Project-X, x-ray ERL. 
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•  R&D focus during the last years was on (and should have been) on achieving 
highest possible fields 

•  But: High gradients only economically usable if accompanied by high intrinsic quality 
factors  

•  Current typical Q-values: 1⋅1010 to 2⋅1010 

⇒ Cost optimal gradient for ILC-type pulsed operation:̃ 35MV/m 
⇒ Cost optimal gradient for cw operation: 15 to 20 MV/m 

Intrinsic Q – Power and Cost 
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•  Improve Q by factor of 2: 

⇒ Increase energy by factor of √2 with same linac length and same 
cryo power (assuming no quench limitations) 

⇒ Or: Reduce linac length by factor of 2 (double gradient) 

⇒ Intrinsic Q has high impact on cost and science potential! 

⇒ Future accelerators (TeV lepton collider, FELs, ERLs, cw 
Project-X) would greatly benefit from intrinsic Q-values at or 
above 2⋅1010 

Impact of high intrinsic Q 
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9-cell ILC cavity (Courtesy HZB)  

Single-cell cavity (Courtesy CEA Saclay)  

Single-cell cavity (Cornell)  

•  Exceptionally high intrinsic Q-values of 
5⋅1010 to >1⋅1011 have been achieved in 
a few cavities in vertical acceptance 
tests (i.e. not in full cryomodules) 

•  Huge potential… 

1.5K  Q-Curve 
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Intrinsic Q – Outstanding Examples 
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L. Lilje et al.	
 2 K	


Q0 versus Eacc: TTF 9-cell cavities 

•  Significant variation in medium field Q-values 

•  Poor repeatability of high Q results 
•  No systematic understanding  

Q0 versus Eacc: Cornell 9-cell cavities 
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Intrinsic Q – poor reliability 
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2.0 K 

1.8 K 

1.6 K 
Q0 

(Courtesy of R.Lange et al. DESY MKS) 

Eacc[MV/m] 

•  Cavities installed in cryomodules show more modest to much lower intrinsic quality 
factors, even at medium fields.  

•  Average Q-value for cavities in cryomodules significantly lower than in vertical 
acceptance tests 

•  No exceptionally high Q-values achieved so far (>2.5⋅1010) 

Complete TTF-cryomodule type III Q0 versus Eacc in the BNL ERL 
prototype cryomodule 
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Vertical acceptance test 

Cryomodule test, total Q (cavity 
walls + HOM beamline absorber?) 

Cryomodule test, cavity walls 

Cavities inside cryomodules (1) 
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Q0 versus Eacc in the Cornell ERL 
Prototype 

Q-degradation with time? 

⇒ Varying degrees of Q-degradation of 
cavities in real linac in cryomodules 

•  Potential reasons:  

•  Q-degradation and field 
emission from dust introduction 
(beamline HOM absorbers?) 

•  condensed gases,  

•  insufficient magnetic shielding 
•  … 
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Cryomodule, August 2008 
Cryomodule April 2009 
Vertical test (typical) 

Cavities inside cryomodules (2) 
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RF frequency and 
Operating 

temperature 
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1.5 GHz 

Residual resistance More resistance 
the more  
nc electrons are 
excited. 

More resistance the 
more the electrons are 

jiggled around. 

Dynamic Cavity Losses (1) 
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•  Total power dissipated into cavity wall: 

•  (R/Q)G given by cell shape and number of cells 
⇒ minimize surface resistance Rs 

  ⇒ operate cavity at temperature such that RBCS < Rres 

   ⇒ Rs ≈ Rres, i.e. independent of frequency! 
   ⇒ For given accelerating field gradient Eacc:   

    

     
   ⇒ High frequency preferred in the regime RBCS < Rres 

Dynamic Cavity Losses (2) 
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(optimistic for large # of cavities ?) (dream for multi cells ?) 

⇒ 1.8K. Note: Lower T is unproven and might 
cause instability in the cryo-system. 

Cooling Power for Dynamic Losses 
(for a given accelerating gradient) 
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•  Lowering the temperature seems to be effective 
approximately as long as Q = Q(T) follows BCS 
and the temperature dependent dynamic loads 
dominate (reasonable lower limit 1.5 K) 

•  He-II cooling might become unstable below 1.8 K 
– tests required 

•  Another cold compressor stage is required for 
each 0.2 K temperature step to lower 
temperatures – investment costs and system 
complexity increase 

•  See for example: Talk by B. Petersen, ERL 2005 

Choice of Temperature 
The lower the better ? 



TTC meeting 19-22 April 2010 FNAL 

14 

•  Unless extremely small residual surface 
resistances become reality in SRF cavities in 
the future, higher frequency (e.g 1.3 GHz) SRF 
cavities give smaller dynamic cavity losses at 
optimized temperature 
–  Important for multi-GeV cw linacs! 

–  Additionally: Cavity surface area ∝ 1/f2 

⇒ Higher frequency gives smaller risk of cavity performance 
reduction by surface defects, electron field emission by 
dust, …  

Choice of frequency (1) 
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•  Why chose <1 GHz anyway in some cases? 
–  Transit time factor considerations for β<1 linacs 

–  HOM considerations for very high current linacs 
(>~100mA) to reduce beam breakup and HOM heating 

–  … 

–  But: Construction cost increases with lower frequency!  

–  But: Operational cost increases with lower frequency!  

–  But: Risk of surface contamination increases with 
lower frequency.  

Choice of frequency (2) 
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Conclusion 1 

•  For 5 GeV, 100 mA ERL: 
– Fundamental mode frequency of 1.3 GHz and 

realistic operating temperature of ~1.8 K 
minimize AC cooling power 

•  Lower frequency would be beneficial if 
higher BBU threshold were required 
– Can increase BBU threshold 1/f (for same 

number of cells per cavity) 
– Note: Other things can have similar / larger 

impact on the BBU threshold current 
– The chrage per bunch increases when every 

bucket is filled, increasing space charge forces. 

< 

Conclusion (1) 
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Q0 and Optimal Field Gradient 
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SRF cyomodules 

•  # of cavities 

•  # cells per cavity 

•  fill factor 

•  … 

Tunnel 

•  Linac 
length 

Cryo-Plant 

•  Cryo-loads at various 
temperatures  

•  Field gradient 

•  Operating temperature 

•  … 

•  Note: cost ∝ power0.4 

RF Power Sources 

•  Power per cavity 

•  QL, microphonics 

•  … 

•  # of cavities 

Cost model 
(main linac 
only!) 

Note: R&D cost and SRF facility cost are 
not included in following example of a 
5GeV ERL ! 

SRF Linac Cost Estimation 
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•  Costs for cryomodules, cryogenic plant, and 
the RF power sources are similar. 

Tunnel RF power Cryomodules Cryogenic plant 0 
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ERL Main Linac cost distribution 
For Eacc = 16.2MV/m 
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Field Emission 
Gamma radiation measured at DESY/FLASH 

from cavity field emission 
(PULSED CAVITY OPATION!): 

Field Emission 
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Conclusion 2A 

•  CW cavity operation favors operation at 
modest field gradients of 15 to 20 MV/m 
⇒ Near cost optimum 
⇒ Reduced operation cost (AC power) 
⇒ Reduced risk of field emission and poor cavity 

performance 
 Note: Cavity designs with high surface electric peak 
fields might require operating at even lower fields!  

⇒ Increased reliability 
⇒ Simplified cavity preparation (compared to ILC) 

Conclusion (2) 
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Q0 and cavity 
preparation 
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•  Several sources are known to increase residual resistance: 

•  Trapped flux for DC external field ⇒ magnetic shielding of Earth’s 
magnetic field  

•  Q-disease from hydrides ⇒ Reduce H-concentration 

•  But: Cavities with similar magnetic shielding show Q-values between 
1⋅1010 and 1⋅1011 ! 

 ⇒ Several other factors must play an important role… 

Residual Resistance 
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•  Most cavities show modest to significant reduction in Q from low to medium 
fields (5 -> 25 MV/m)  

•  Proposed models usually combine 
• Field depended surface resistance 

• Thermal feedback RBCS(T) 

•  But: medium field Q-slope strength varies a lot (factor 2 to 5) 

•  But: no good understanding of physics and best surface treatment to 
minimize Q-slope 

From Ciovati: 

“High Q at Low 
and Medium Field” 

γ 

Medium field Q-slope – understood ? 
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•  Smaller medium field Q-slope in BCP cavities vs. EP cavities? 

•  Which surface treatment gives the highest Q-values realizably? 

Q0 versus Eacc: 9-cell EP cavities Q0 versus Eacc: 9-cell BCP cavities 

Medium field Q-slope – EP / BCP 
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•  Low (̃120 C) and high 
temperature (800C to 1400C) heat 
treatments have been found to 
impact residual resistance and  
medium field Q-slop 

•  But: no coherent picture 

No bake 

120C bake 
No bake 

120C bake 

No bake 

1400 C bake 1400C bake + 
110 C bake 

Medium field Q-slope – heat treatment 
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Module 6 CMTB 
Meas Qo/Eacc average gradient 10Hz 500/800us 

Status:13-Mar-07 Esch/Kos/Lil/Lan 
MKS 
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Conclusion 2B 

•  Cavity quality factor at operating gradient has 
high impact on cost! 
– Q0 of 2⋅1010 at 1.8 K is realistic for the near future 

•  Best performing TTF/FLASH module: 

2.0 K 

1.8 K 

1.6 K 
Qo 

(Courtesy of 
R.Lange et al. 
DESY MKS) 

Conclusion (3) 


