Front End Status

January 22, 2010

Harold G. Kirk

The Front End Layout

Base Line

- Proton Beam
- 4MW, IDS ($5-15 \mathrm{GeV}$)
- Target System
- Hg Jet, 20T Solenoid
- Capture Channel
- Taper 20T \rightarrow 1.75T
- Phase Rotation
- 201 MHz RF, 12 MV/m gradients
- Pre-cooler
- Alternating 2.8-T solenoids, 15MV/m RF gradients

Target System

- 8 GeV Proton Beam favored
- Multiple Beam entry points considered
- Proton Beam 3 micro-bunches with $\mathrm{dt}=100 \mu \mathrm{~s}$

Outstanding Issues:

- Nozzle design and simulations
- Hg Beam dump configuration
- Shielding design
- Hg handling system design

Capture Channel

- Shorter decay channel ($100 \mathrm{~m} \rightarrow 50 \mathrm{~m}$)

Outstanding Issues:

- Optimization of field taper
- Impact of enhanced field (30T) on capture efficiency and meson emittance

Phase Rotation

- Reduce length ($100 \mathrm{~m} \rightarrow 60 \mathrm{~m}$)
- Reduce captured bunch train (18 \rightarrow 10)

Outstanding Issues:

- Need for realistic solenoids, windows
- Increased solenoid field (1.75T \rightarrow 2T)
- Requires increased RF gradient (12MV/m $\rightarrow 15 \mathrm{MV} / \mathrm{m}$)

RF in magnetic field is the outstanding crucial issue!

Pre-Cooler

- Continued optimization studies of lattice

Outstanding Issues:

- Consider using alternate lattice designs
- FOFO Snake
- Helical Cooling Channel

Alternatives

Until the RF/Magnetic Issues are clarified, we must devote effort to considering alternatives:

- HP RF systems
- Magnetic Insulations lattices
- Shielded RF cavities
- Increased lattice lengths
- Be RF cavities

This issue be resolved or more Design and Simulation effort needs to be expended

Front End Milestones

Milestone

Date

Specify Target Initial Configuration
FY10
Interim IDS-RDR Report
Specify Front End Initial Configuration Front End Engineering Design Costing of Front End
IDS-NF RDR Report

