Muon Cooling Cavity Simulation With Advanced Simulation Codes ACE3P

Zenghai Li

SLAC National Accelerator Laboratory February 5, 2010

Outline

- SLAC Parallel Finite Element EM Codes: ACE3P

 Simulation capabilities
- Previous work on muon cavity simulations

 200 MHz cavity with and without external B field
 805 MHz magnetically insulated cavity

Parallel FE Based EM Codes: ACE3P

ACE3P: Advanced Computational Electromagnetics

Suite of <u>scalable</u> Finite-Element Electromagnetics codes to model Large, Complex structures with high accuracy:

Frequency Domain: (Dmega3P - S3P	 eigensolver (mode damping, non-linear – S-parameter
<u>Time Domain</u> :	T3P Pic3P	 – transients & wakefields – self-consistent particle-in-cell (PIC)
<u>Particle Tracking</u> :	Track3P Gun3P	 dark current and multipacting space-charge beam optics
<u>Multi-Physics</u> :	TEM3P	– EM-thermal-mechanical
Visualization:	Paraview	 meshes, fields and particles

1st User Code Workshop CW09 in Sept. 2009 CW10 planned for fall 2010

Massively Parallel EM Simulations

- Focus on Large-scale simulations using DOE facilities at NERSC (3 allocations) and NCCS (1 INCITE award)
 Average job size on jaguar: 6000 cores (2008), 10000 cores (2009)
- Solve challenging problems in Accelerator design, optimization and analysis via High Performance Computing
- Apply to DOE programs in Accelerator science and accelerator development as well as projects:
 - <u>HEP</u> High Gradient, Laser Acceleration, *Muon Collider*, ILC, Project X, LHC/LARP, CLIC
 - <u>NP</u> CEBAF 12 GeV Upgrade
 - BES SNS, LCLS

Key Strengths of ACE3P Codes

Key strengths:

- Fidelity Tetrahedral conformal mesh with quadratic surface
- Accuracy Higher-order finite elements (p = 1-6)
- Speed & size Massively parallel computing

Convergence vs FE order

Example: accurate 3D NLC DDS Cell design (Omega3P, 2001)

 Microwave QC verified cavity frequency accuracy to 0.01% relative error (1MHz out of 11 GHz)

Track3P: Multipacting & Dark Current Simulation

- 3D parallel high-order finite-element particle tracking
- Using RF fields obtained by Omega3P (resonant mode), S3P (traveling wave) and T3P (transient fields)
- Curved surfaces for accurate surface fields
- Field and secondary emission models
- MP and dark current analysis postprocessing tools
- Benchmarked with measurements
 - Rise time effects on dark current for an X-band 30-cell structure
 - Prediction of MP barriers in the KEK ICHIRO cavity

Example: MP Simulation For ICHIRO Cavity

- Multipacting in end beam pipe step
- Simulation agree with measurement

(Left) MP barriers in 9-cell ICHIRO cavity calculated with Track3P, (Right) MP barriers measured on ICHIRO prototype (K. Saito, KEK).

200 MHz and 805 MHz muon cavity Mutipacting (MP) and dark current (DC) simulations

200 MHz cavity MP and DC simulation

Dark Current Impact Energy vs RF Phase

At 5MV/m, 2T Axial B Field

Impact Energy v.s. RF phase

- Electron energy ~ 1MV
- All dark current intercepted by material surface
- Dark current heating?

200 MHz: With Transverse External Magnetic Field

Impact energy of resonant particles vs. field level

2 types of resonant trajectories:

21

- Between upper and lower irises
- Between upper and lower cavity walls

Some MP activities above 6 MV/m

2 types of resonant trajectories:

- One-point impacts at upper wall
- Two-point impacts at beampipe
- MP activities observed above 1.6 MV/m

805 MHz Magnetically Insulated Cavity

Track3P simulation with realistic external magnetic field map

