MAP Acceleration Simulation and Design

J. Scott Berg
Brookhaven National Laboratory
MAP Friday Meeting
12 February 2010

MAP Acceleration Primary Tasks

- Neutrino Factory: IDS-NF
 - Linac and RLA design (next talk)
 - □ FFAG design
- Muon Collider
 - Choose high energy acceleration scenarios
 - ♦ RLAs
 - Fast ramping synchrotrons
 - Collective effects, especially RF cavities

IDS-NF FFAG Base Lattice Design

- Three updated designs
- FODO: high average gradient
- Triplet, one cavity: 15% cost savings
- Triplet, two cavities: better average gradient (< FODO), easier injection
- Must choose one soon
- Minor tweaks still needed, will not change significantly

IDS-NF FFAG Injection and Extraction

- Scenarios designed for three lattices (Kelliher, Pasternak)
- 0.1 T kickers, shared for two signs
- Triplet with two cavities easier
 - □ Fewer kickers (5 or 6 vs. 8 each)
 - Septum field lower
- Larger aperture in injection/extraction regions
 - Closed orbit distortion manageable

IDS-NF FFAG Chromaticity Correction

- Designed chromaticity correction (Machida): improves longitudinal dynamics
- Permits insertions to ease injection/extraction
- Poorer dynamic aperture, but maybe sufficient
- More costly (TODO: quantify)
- Evaluate level of partial correction to use
- Look at correcting with higher tune (less costly?)

IDS-NF FFAG MAP Contributions

- Up to now
 - Design and beam dynamics of FFAG
 - Similar, related work for the EMMA experiment
- Priority needs
 - 1. Serious look at kickers
 - 2. Cost comparison with RLA
 - 3. More beam dynamics studies

Muon Collider Acceleration Scenario Choice

- Two scenarios discussed in any detail
 - □ RLA(s)
 - Fast ramping synchrotrons
- Choose based on
 - □ Cost
 - Strongly related to efficiency, mostly correlated with number of passes
 - Technical feasibility

Muon Collider Acceleration RLA Scenario (Bogacz, others)

- Increase RLA passes to 12 by
 - Ramping linac magnets
 - □ FFAG-like arcs (Trbojevic), two passes each
- Areas for study
 - Requirements for ramping magnets
 - Arc-linac matching
 - Collective effects with limited synchrotron oscillations
 - □ Still few passes: cost

Muon Collider Acceleration Fast Ramping Synchrotrons

- Original idea by Summers
- Magnet fields increase with beam momentum
 - Much faster than usual
 - Fixed-ramping combination at high energies for high average field
- Potentially many turns: efficient
- Lose RF synchronization: design lattice to fix
- Many challenging pulsed magnet systems

Fast Ramping Synchrotrons Lattice Design

- Lattice design goals
 - Keep RF synchronized
 - Minimized beam excursion
 - Avoid resonances
- Optimization problem (like FFAGs!)
 - Vary two quads and dipoles (3 knobs)
 - □ Fix time of flight and tunes
 - Minimize horizontal position variation

Muon Collider Acceleration Collective Effects

- Huge collective effects
 - □ 1.3 GHz: 8.3% energy extraction/bunch pass
 - Additional higher order/propagating modes
 - □ Good: beam loading gives efficiency
 - Massive localized collective effect
- Few passes
- Will synchrotron oscillations stabilize?
 - □ Fast ramping: strong synchrotron oscillations

Muon Collider Acceleration MAP R&D Priorities

- RLA Scenario
 - 1. Lattice design and simulation
 - 2. Specification of ramped magnet hardware
- Fast ramping scenario
 - 1. Detailed lattice design (try different possibilities)
 - 2. Specification of all pulsed magnet systems
- Objective costing for comparison

Muon Collider Acceleration MAP R&D Priorities

- Collective effects
 - 1. Study dynamics in above scenarios
 - 2. Understand impedance sources
 - Cavities
 - Pulsed magnets

