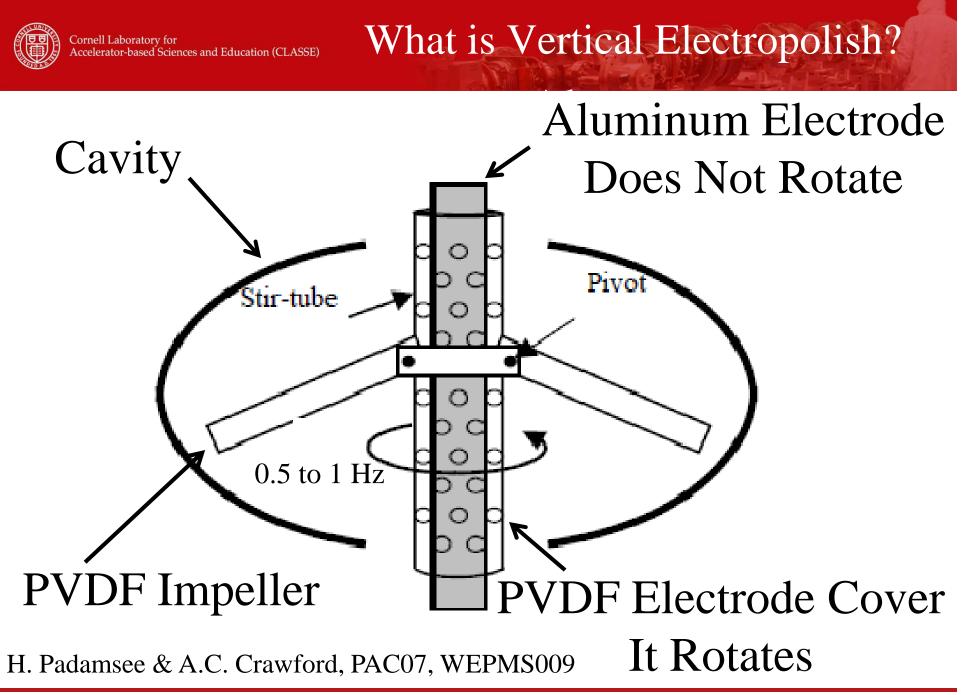


Industrialization of Vertical Electropolish

Zachary A. Conway, Georg Hoffstaetter, Hasan Padamsee, Matthias Liepe Cornell University Laboratory for Elementary-Particle Physics



Outline & Collaborators

- What is Vertical Electropolish?
- Why do we care?
- Vertical Electropolish Industrialization
- Future Work

Collaborators: Curtis Crawford Holly Conklin Paul Carriere Cornell SRF Group

Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE)

What is Vertical Electropolish?

	Table 1. Parame	ters for EP	
	Cathode	Aluminum >99.5%	14 A
	Stir-Tube	PVDF	Š.
	Paddles	PVDF	
	Seals	Viton	
	End Groups	PTFE, HDPE	
	Electrolyte	24 Liters	
20-25°C	Maximum Use	9 g/L dissolved Nb	
	Current	400 Amperes	
	Voltage	14.5 Volts	22 22
	Temperature	36 to 40 degrees C	
	Stir - Tube Transparency	>50%	
	Stir Frequency	2 Hz. —	$\rightarrow 0.5$ to 1 Hz
	EP rate at Equator	0.5 micrometer/min	
~0.25 µm/min	EP rate iris/equator	<1.5	
~0.23 µm/mm			-

Electrolyte formula by Volume

 $H_2SO_4(96\%) / HF(48\%) = 10/1 + additional 2.5cc HNO_3$ (70%) per liter

H. Padamsee et al, PAC07, Pg. 2343 WEPMS009

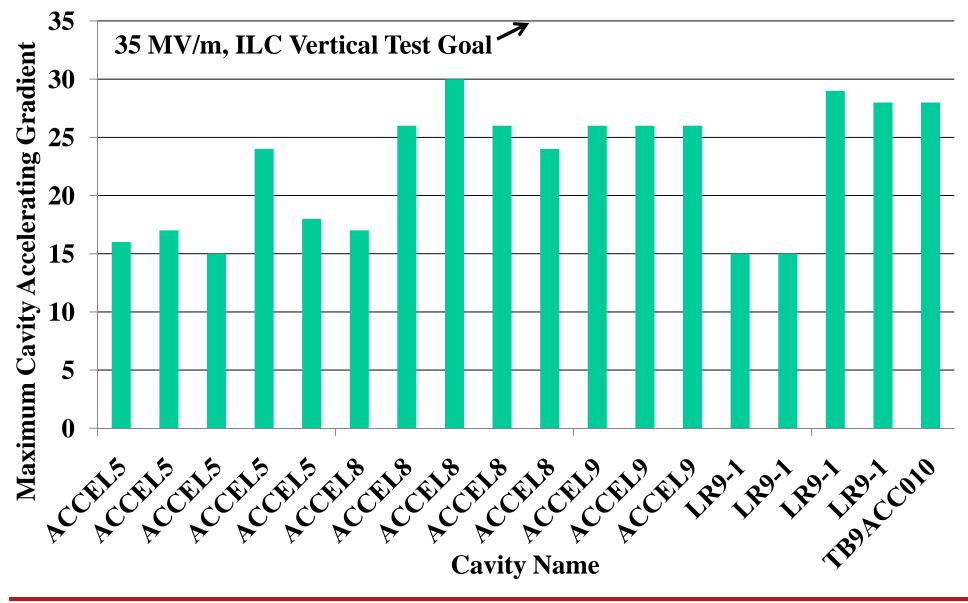
^



What is vertical Electropolish?

Horizontal Electropolish FNAL/ANL Joint Processing Center

- Vertical Electropolishing has the Following Benefits:
 - Eliminates rotary acid seals
 - Eliminates sliding electrical contact
 - Eliminates the cavity vertical/horizontal position control fixturing
 - Simplifies the acid plumbing/containment
 - The outside of the cavity is actively cooled, providing better temperature control of the polishing reaction.
- Vertical electropolishing's disadvantages are on the next slides.



- Vertical electropolish has never produced a 9-cell cavity with an accelerating gradient greater than 30 MV/m.
- Individual cells have performed well but not every cell at the same time which is what you want in an accelerator.
- Vertical electropolish is not demonstrated at the same level of performance as the KEK horizontal electropolish performed all across the world.

Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE)

Vertical Electropolish Results

Why do we care about Vertical Electropolish

- Vertical Electropolishing has the following difficulties
 - Accelerated material removal from downward facing surfaces.
 - Can remove material up to 2x faster
 - Depends upon the agitation speed and flow rate
 - Spinning impellers may rub on cavity surface. This is very very bad!
 - Cavity is rotated 180⁰ every ~100 μm during heavy polishes.
- Things that may or may not matter
 - Small acid volume, just fill the cavity.
 - Impeller hinges rub as you insert/remove the aluminum electrode

Industrialization of Vertical Electropolishing

- Nothing has happened yet
- What should we do to zeroth order:
 - Have someone visit Cornell/JLAB and learn how to vertically electropolish cavities
 - Send them back to their employer with the design and knowledge and have them build a vertical electropolish setup themselves.
 - Vertically electropolish a cavity and send it to a lab to test
 - If that all goes well, great.