Fluoride-Free Nb Cavity EP

Xin Zhao, Sean Corcoran, Michael Kelley

Virginia Tech Materials Science & Engineering

Maximum smoothness Robust process Reasonable cost Environmental friendliness Sometime soon

Work supported by DE-FG02-06ER41434

EP According to Landolt

Attack largest asperities most

Mass transfer resistance leads to etchant depletion, product accumulation

Eliminate selective site attack Surface film renders all sites equivalent

EP According to Landolt

Explored Ti and Ta 0.5 M – 5 M sulfuric acid in methanol RT to -10° C Cell, RDE, EIS experiments

Experimental Results

Current plateau: lo T, 3 M acid Product inhibition mechanism Salt film on surface

Current Density vs. Anode Potential

EP off (above) and on the plateau for 0.5 M acid

Back-scattered electron image

Scan length dependence of roughness

Conclusions

Nb EP is much like Ta and Ti

Mass transfer limitation and film formation are attained

Surface topography comparable to standard EP

Process could be implemented in vertical EP

More work to be done !!