Basics of Dislocations in High Purity Niobium

D. Baars¹, C. Compton², T. Bieler¹ Michigan State University ¹Department of Chemical Engineering and Materials Science ²National Superconducting Cyclotron Laboratory

> SRF Workshop 2010, Tallahassee February 19th

Support from Fermilab, DOE

Dislocation substructure, recrystallization, and texture are important for SRF community

Polycrystalline Nb

Would like to determine textures best suited for given forming process (e.g. hydroforming)

- Need accurate crystal plasticity model
- Large grain/Single crystal Nb
 - Tubes (welded or seamless) for hydroforming
 - Will deform differently in different crystal directions
 - Relating dislocation substructures to recrystallized grain orientations would aid design of desired textures
- Electric/Superconducting properties
 - Romanenko's thesis on high-field Q-slope correlates hot spots to higher local misorientation of lattice (higher dislocation density)
 - Phonon scattering due to dislocation lines parallel to phonon travel

Difference between screw and edge dislocations

- Line defect in crystal lattice, burgers vector (b) and line direction (t)
- Edge has well defined slip plane (b x t = n), Screw does not (b || t)
- Sufficient shear stress resolved on slip plane and in burgers vector direction \rightarrow glide

Mechanical Metallurgy 3rd Ed., Dieter 1986

High purity BCC Slip Systems

Slip is expected to be easiest (lowest CRSS*) on **{110}** planes, which have highest planar density, {123} at large strain

6 of the 48 available are illustrated and listed:

[-1 1 1] (0 -1 1) [-1 1 1] (2 1 1)

 $\begin{array}{ll} [-1 \ 1 \ 1] \ (1 \ 1 \ 0) & [-1 \ 1 \ 1] \ (1 \ -1 \ 2) \\ [-1 \ 1 \ 1] \ (1 \ 0 \ 1) & [-1 \ 1 \ 1] \ (-1 \ -2 \ 1) \end{array}$

Screw Dislocations in BCC

DUESBERY and VITEK: OVERVIEW No. 128 Acta mater. Vol. 46, No. 5, pp. 1481–1492, 1998 © 1998 Acta Metallurgica Inc.

- Core dissociates in 3D on three symmetric {110} planes < T
- Non-glide shear stresses interact with edge components \rightarrow CRSS varies with orientation
- Edge components small in Nb, dependence of CRSS on crystal orientation is small
 - In FCC, core already moslty planer

Favored slip planes change with T & purity

Flow Stress (MPa

Possible issue of hydrogen contamination

- Hydrogen penetration during
 - Deformation (thin oxide cracks)
 - Rough calculation: H may move 4mm in 5min at RT in Nb
 - How much of an effect?
 - Etching/Electropolishing
 - Not usually done before forming, sometimes remove Fe
- Stabilizes {110} dissociation
 - Promotes Slip on {110}
 - Dislocations, vacancies trap H
- Include in CPFE modeling of forming process

 Complication: The distance between cross-slip events is unknown

Anomalous Slip

(0-11)

[111](-1-12)

- Highest shear stress on two intersecting, equally active {112} planes
- Cross-slip to mutual {110} plane
 - of ~half the resolved shear stress on {112}
- Maintains lower free energy

[-111](1-12)

oVacancies

000

Figure 5-24 Movement of jogged screw dislocation. (a) Straight dislocation under zero stress; (b) dislocation bowed out in slip plane between the jogs due to applied shear stress; (c) movement of dislocation leaving trails of vacancies behind the jogs. (From D. Hull, "Introduction to Dislocations," p. 136, Pergamon Press, New York, 1965. By permission of the publishers.)

5 independent slip systems needed for arbitrary shape change (Von Mises)

- Taylor model often used for polycrystals

 Strain of each grain same as that of aggregate
 Different stress states in each grain
 - maintains grain boundary cohesion
 - Refined methods for selecting the 5 systems

Dislocation structures

• Grains divide into

- Cell Blocks (CBs) bounded by long flat boundaries
- Microbands (MBs)- double walled, small strains
- Dense Dislocation Walls (DDWs)- single walled, small strains
- Lamellar boundaries (LBs)- appear at large strains, form very flat CBs, replace MBs and DDWs
- All the above are considered geometrically necessary boundaries (GNBs)
 - Separate regions that deformed differently
 - Arranged in parallel families
 - Special macroscopic orientation relative deformation axis
 - Increasing strain- increase in misorientation angle and decrease in spacing, much more rapidly than IDBs
- Cells within CBs (SSDs)
 - Equiaxed, bounded by incidental boundaries (IDBs)
 - Low misorientation angles

Shear bands at grain boundaries

Crystal directions || rolling direction Bicrystal rolled 40%

Evidence for multiple slip planes

Example of possible embryos/nuclei in Fe- 3wt% Si

Lattice rotations about ~{111} of possible embryos, black lines >15° misorientation

Microshear bands at grain boundary. EBSD step size 1.4 µm.

> Intersecting slip systems lead to local rotation about a {111} axis and make possible embryos within microshear bands

Dorner et al. Scripta Mat., 57, 2007

Rolled to 71%, no heat treatment

Near top shows development of measurable new orientations (blue) in right grain, *only due to strain*

2micron step Sample 6 As-rolled to 70% 011 001 reduction near bottom - shows lesser development of new orientations in right TΠ ГD grain 30 deg RD RD rotation 111 211 about Omicron ste <111> 400 µm 001 111 TD TD. RD RD RD RD

Summary

- Complex dislocation behavior most important for initial production of polycrystalline Nb sheet
 - Screw dislocation behavior controls plastic deformation behavior in sxl/large grain Nb
 - Awareness so can control deformation texture and therefore Rx texture
 - Need to incorporate screw behavior into crystal plasticity model
 - Others have done this, evaluate best method to use
- Complex BCC slip less of an issue in polycrystal
 - Closer to random texture more isotropic
 - Strong textures may be more affected
- Provocative questions
 - After Rx, why not leave the sheet alone?
 - After 800C Bake, why more EP?
 - Can we put furnace in Clean room?

