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Dislocation substructure, recrystallization, and 
texture are important for SRF communityp y

• Polycrystalline Nb
– Would like to determine textures best suited for givenWould like to determine textures best suited for given 

forming process (e.g. hydroforming)
– Need accurate crystal plasticity model

• Large grain/Single crystal Nb• Large grain/Single crystal Nb
– Tubes (welded or seamless) for hydroforming
– Will deform differently in different crystal directions 
– Relating dislocation substructures to recrystallized grain 

orientations would aid design of desired textures
• Electric/Superconducting propertiesp g p p

– Romanenko’s thesis on high-field Q-slope correlates hot 
spots to higher local misorientation of lattice (higher 
dislocation density)y)

– Phonon scattering due to dislocation lines parallel to phonon 
travel



Difference between screw and edge 
dislocationsdislocations

• Line defect in crystal lattice, burgers vector (b) and line direction (t)
• Edge has well defined slip plane (b x t = n), Screw does not (b || t)
• Sufficient shear stress resolved on slip plane and in burgers vector p p g

direction→ glide

bt

Mechanical Metallurgy 3rd Ed., Dieter 1986 b
t



Glide loops develop inside a crystal 
and expand into space and terminateand expand into space, and terminate 

against a grain boundary
• Dislocation terminates on itself

$

negative screw segment
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τ

positive shear stress
will expand loop

τxy
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will expand loop

t $

positive screw segment

adapted from Dr. Grummon’s lecture notes b



High purity BCC Slip Systems

Slip is expected 
to be easiest 

(lowest CRSS*) 
on 

{110} planes, 
which have highest 

planar density,

6 of the 48 available are illustrated and listed:

and {112}

{123} at large 6 of the 48 available are illustrated and listed:{ } g
strain

[-1 1 1] (1 1 0)
[-1 1 1] (1 0 1)
[ 1 1 1] (0 1 1)

[-1 1 1] (1 -1 2)
[-1 1 1] (-1 -2 1)
[ 1 1 1] (2 1 1)[-1 1 1] (0 -1 1)

* Critical Resolved Shear Stress

[-1 1 1] (2 1 1)



Screw Dislocations in BCC
• Core dissociates in 3D on three symmetric {110} planes < T

Non glide shear stresses interact with edge components CRSS varies with
ˇ

• Non-glide shear stresses interact with edge components → CRSS varies with 
orientation 

• Edge components small in Nb, dependence of CRSS on crystal orientation is small
– In FCC, core already moslty planer

Small!

Edge 
components

Screw 
components



Favored slip planes change with T & purity

C li f 111 l t li

{110} 
slip transition of core to dissociate on 3 {112} planes

Cross slip of <111> screws, elementary slip 
steps on {112}

Anomalous slip possible
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Cavity 
Tuning

Interstitial 
impurities can 

suppress

Change in kink 
mechanism

M
oTuning, 

pressure 
vessel 
code

Cavity 
forming 

300K

suppress 
transition

(O, H)

~550K
<120K

Seeger 2001, 2006

code ~300K



Possible issue of hydrogen 
contamination

• Hydrogen penetration during
D f ti (thi id k )

contamination

– Deformation (thin oxide cracks)
• Rough calculation: H may move 4mm in 5min at RT in Nb
• How much of an effect?

– Etching/Electropolishing
• Not usually done before forming, sometimes remove Fe

S { }• Stabilizes {110} dissociation
– Promotes Slip on {110}

Di l ti i t H– Dislocations, vacancies trap H
• Include in CPFE modeling of forming process



Can we tell from slip traces?

Macroscopic:T>T,  τˇ
(-110)(-211)

Maximum resolved 
shear stress 

(MRSS) plane

(0-11)

( 101)

(-1-12)

(1 21)

• Complication: The distance between cross-slip

(-101)(1-21)

Complication: The distance between cross slip 
events is unknown



Anomalous Slip
[-111](1-12)

(0-11)

[-111](1-12)
Tensile Axis

[111](-1-12)

Most Much less • Highest shear stress on two intersecting, 
ll ti {112} l Likely likelyequally active {112} planes

• Cross-slip to mutual {110} plane
– of ~half the resolved shear stress on {112}

• Maintains lower free energy

To avoid:

• Maintains lower free energy



5 independent slip systems needed for 
arbitrary shape change (Von Mises)arbitrary shape change (Von Mises)

• Taylor model often used for polycrystalsTaylor model often used for polycrystals
– Strain of each grain same as that of aggregate
– Different stress states in each grainDifferent stress states in each grain
– maintains grain boundary cohesion
– Refined methods for selecting the 5 systemsg y



Dislocation structures
• Grains divide into

– Cell Blocks (CBs) bounded by long flat boundaries
– Microbands (MBs)- double walled, small strains
– Dense Dislocation Walls (DDWs)- single walled, small strains
– Lamellar boundaries (LBs)- appear at large strains, form very flat CBs, 

replace MBs and DDWs
All the above are considered geometrically necessary boundaries– All the above are considered geometrically necessary boundaries 
(GNBs) 

• Separate regions that deformed differently
• Arranged in parallel families
• Special macroscopic orientation relative                                                        to 

deformation axis
• Increasing strain- increase in misorientation                                             

angle and decrease in spacing, much more                                             
idl th IDBrapidly than IDBs

– Cells within CBs (SSDs)
• Equiaxed, bounded by incidental                                                      dislocation 

boundaries (IDBs)( )
• Low misorientation angles

Doherty et al, Mat Sci Eng A238 (1997) 219-274



Shear bands at grain boundaries

Dislocation substructures much larger than the 
h l th l b d

100μm

coherence length are commonly observed

Evidence for multiple slip planes
Crystal directions || 

rolling direction

Bicrystal rolled 40%



Example of possible embryos/nuclei in Fe- 3wt% Si

Microshear bands at grain 
boundary.  EBSD step size 
1 4

Lattice rotations about ~{111} 
of possible embryos, black 
lines >15° misorientation 

Intersecting slip systems 
lead to local rotation

1.4 μm. 

lead to local rotation 
about a {111} axis and 

make possible embryos 
within microshear bandswithin microshear bands

Dorner et al. Scripta Mat., 57, 2007



Rolled to 71%, no heat treatment Near top shows 
development of 
measurable newmeasurable new 
orientations (blue) in 
right grain, only due to 
strainSample 6

As-rolled to 70% 
reduction near bottom
– shows lesser

2micron step

shows lesser 
development of new 
orientations in right 
graing

30 deg 
rotation 
about 
<111>10micron step



Summary
• Complex dislocation behavior most important for initial 

production of polycrystalline Nb sheet
Screw dislocation behavior controls plastic deformation behavior– Screw dislocation behavior controls plastic deformation behavior 
in sxl/large grain Nb

– Awareness so can control deformation texture and therefore Rx 
texture

– Need to incorporate screw behavior into crystal plasticity model
• Others have done this, evaluate best method to use

• Complex BCC slip less of an issue in polycrystal
– Closer to random texture more isotropic
– Strong textures may be more affected

• Provocative questions
After Rx why not leave the sheet alone?– After Rx, why not leave the sheet alone?

– After 800C Bake, why more EP?
• Can we put furnace in Clean room?


