Direct and Indirect Process Feedbacks for the Fabrication of 1.3GHz Elliptical SRF Resonators to Improve Production Yields

6th SRF Materials Workshop February 18-20, 2010, Tallahassee, Fl Presented by Ralf Edinger

Start Condition Nb Sheets

- Varying surface finishes have impact on the quality of the formed part
- The number of defects (imprints) on sheets before fabrication starts must be reduced

Forming Tooling

"HARD DIES"

"POLYMER TOOL"

- Establishing pressure curves
- Mapping changes in material thickness
- Dimensional scan shape of half cell
- RF surface condition after forming

Possible Defects from Forming 1

(Copper & Niobium)

Equator Effects caused by Dies

No damage on 2.1mm forming due to large gap

Possible Defects from Forming 2

Mapping of Material Thickness

Iris compression/ thinning resulting from forming Decrease in thickness at Iris ~15%; Equator thickening resulting from forming Increase in thickness of 10%

Pre-Condition Impact

Strong surface structuring due to forming (orange peeling)

Surface finish very smooth; no structuring due to forming visible

RF-Surface Condition

RF-surface finish is depended on a number of variables
Start condition of Nb Sheet
Grain structure and direction
Type/design of forming tool

• Surface finish of dies during forming; Al very problematic for production runs

Heat treatment of half cells after forming?

Etch / EBW Line Concept

Question Pre-EBW

Half-cell- / Nb assembly bake after etching & rinsing before EBW?

Pre-weld bake and "hot assembly" used Sensor/aerospace industry (30 to 80°C)

EBW & Fixture

EBW fixture to secure half cell close to equator during welding. Integrated dynamic weld preload (springs) for length compensation. Effect: Colder surfaces (steeper Δ T) reduces adhesive bonding of weld deposition.

EBW Smart-bell

First results show very good weld surface formation inside the cavity. New modified welding parameters reduced the amount of weld deposition (solid and vapor)

New EBW Concepts

Monitoring of load on cavity during assembly and EBW in order to capture fabrication data.

Define contact points on surfaces for control.

Is higher temperature gradient during EBW better?

Summary

- Dumbbell / Smartbell both strategies are possible; what is the perfect weld / cavity surface for SRF?
- Smartbell configuration blending of Iris possible
- Control forces / integrated data collection during the fabrication of cavities (forming, welding etc.)
- Heat treatment after forming?
- Baking after etch/rinse prior EBW; (H-guarantee)
- Integrated data collection over cavity processing and handling during fabrication at any given time to improve reliability