MgB₂ Coating for SRF Cavities

Xiaoxing Xi

Department of Physics Temple University, Philadelphia, PA

and

Penn State University, University Park, PA

February 19, 2010 SRFMW Tallahassee, FL

Potential Low BCS R_s in MgB₂ for RF Cavity

Vaglio, Particle Accelerators 61,391 (1998) R_s from π Gap

- + 230 $\mu\Omega$ at 15 K and 18 GHz
- Scale to 0.5 GHz: 177 nΩ at 15 K.
- >20 time reduction in R_s for 15 K to 4 K has been shown for MgB₂

Potential High Maximum E_{acc} in MgB₂ for RF Cavity

Issues to be studied:

- Effects of existence of two gaps.
- ξ is larger for π band than for σ band (Koshelev and Golubov, PRL 90, 177002 (2003)).
- λ is larger for π band than for σ band (Eisterer et al, PRB 72, 134525 (2005)).

Experimental Measurement of H_c of MgB₂

Stripline Resonator Measurement at 1.5 GHz

Oates, Agassi, and Moeckly, IEEE Trans. Appl. Supercond. 17, 2871 (2007) By Dan Oates, MITLL

Keys to Growth of MgB₂ Films

1.0

- Keep a high Mg pressure for phase stability

For example, at 600°C Mg vapor pressure of 0.9 mTorr or Mg flux of 500 Å/s is needed

 No need for composition control, as long as the Mg:B ratio is above 1:2.

— Keep oxygen away: Mg reacts strongly with oxygen - forms MgO, reduces Mg vapor pressure.

— Avoid carbon: Carbon doping reduces T_c and increases resistivity

Hybrid Physical-Chemical Vapor Deposition

Schematic View

Wu et al., APL 85, 16 (2004)

Microwave Properties vs Cleanness of MgB₂ Films

— Dielectric single-crystal sapphire puck resonator at 18 GHz.

— Cleaner films (low resistivity) leads to lower surface resistance, shorter penetration depth, and smaller π band gap (less interband scattering).

Penetration Depth

Jin et al, SC Sci. Tech. 18, L1 (2005)

Large Area HPCVD Films Using STI Pocket Heater

Differences from reactive co-evaporation:

- B₂H₆ used as boron source instead of e-beam evaporation
- Hydrogen used as the carrier gas instead of HV
- Deposition temperature in broader range

Advantages:

- Large area and double sided films
- Potential for scale up for wires

Wang *et al*. Supercond. Sci. Tech. 21, 085019 (2008)

Scaling up HPCVD for Large Area Films

Penn State

Peking University

- Inductive heater
- Successful
- 5mm x 5mm

- Resistive heater
- Successful
- 15mm x 15mm

Temple University

- Resistive heater
- Designed for 2" dia.

Coating of 6 GHz Nb Cavity

• 6 GHz Nb cavity provided by Enzo Palmieri, INFN. Characterization capability exists at INFN.

• Small size: Can be coated using existing equipment in the lab; Low cost for optimization; First step towards coating of larger cavities.

Low-Field Microwave Magnetoabsorption

Prof. Som Tyagi, Drexel University

Bai, Patanjali, Bhagat, and Tyagi, J. Supercond. 8, 299 (1995).

- Energy loss caused by the vortex movement leads to increase in microwave reflected power *P* from a resonated cavity
- Hysteretic loop related to trapped vortices in grain boundaries.

dP/dH – H Loops for MgB₂ Films

$\delta_H - T$ for MgB₂ Films

Conclusion

- Clean MgB_2 thin films have excellent properties:
 - low resistivity (<0.1 $\mu\Omega$ cm) and high T_c promise low BCS surface resistance
 - long coherence length and short penetration depth promise high H_c : possibly as high as ~ 820 mT
 - Two gap effects need to be investigated.
- Current status of MgB_2 coating for SRF:
 - Scaling up for *in situ* deposition of 2" films
 - Coating of 6 GHz cavity planned by both *in situ* and *ex situ* processes

— Low-Field Microwave Magnetoabsorption may provide useful information for SRF.