Materials issues from recent cavity experience and in view of a 650 MHz option for Project X

Lance Cooley SRF Materials Group Head

Overview

- Questions and drivers from ILC, XFEL, and other 1.3 GHz cavity R&D
- Project X option at 650 MHz
- Issues being debated for the baseline cavity process
 - Includes repair, alternatives

Acknowledgments

- S. Holmes, J. Kerby, M. Champion, R. Kephart, C. Ginsburg, A. Rowe, G. Wu
- JLab, Cornell, MSU programs
- Cavity vendors

SRF cavity fabrication sequence

	Step	Why?	Tool / facility
At niobium vendor	Melt Nb	Clean, high K _{Th} E _{Acc} ∝RRR ^{1/2}	E-beam melt
	Forging	10 cm grains	Forge Proprietary
	Roll	Make sheets	Mill, Oven Proprietary
At cavity vendor	Rx and level	Ductility, flatness	High-vac Oven, Proprietary
	Deliver		
	Form 1/2 cells	Cavity shape	Die + press
	Iris weld (from inside)	Clean weld	Electron Beam Weld + tooling
	Dumbell weld (from outside)	Geometry difficult	EBW + tooling
	End pcs weld		EBW + tooling

‡Fermilab

Chemical processing sequence

	Step	Why?	Tool / Facility
	Degrease		Ultrasonic tank (US) + ultra- pure water (UPW)
Quench	Outer etch	Better heat xfer	BCP tool + Acid
	Bulk EP	150 µm damage	EP tool + Acid
	Wash	Chem. Residue	US + UPW
	800 °C bake	Hydrogen	High-Vac Oven
	Re-tune	Shape changes	Tuning machine
	Fine EP	Smooth inner surface	EP tool + Acid
	Wash	Chem. Residue	US + UPW + alcohol?
	Rinse	Dust	High Pressure Rinse with UPW in class 10
	Assemble		Vac, Class 10
	120 °C bake	(It works)	Low-T oven
	Vert. test		VTS

SRF Materials Workshop – Tallahassee – 18-20 Feb 2010

‡Fermilab

1.3 GHz at a glance

- Handful of 9-cell cavities now being processed to >40 MV/m at JLab! FNAL/ANL now getting into 30s...
- 1-cell cavities can be processed to >40 MV/m routinely!
- Dressed (i.e. with couplers, cryostats) cavities are entering into the processing stream.
- Multiple vendors in cavity stream
 - ACC or RI, AES, PAVac, NR Niowave-Roark, ZANon...
- Localized quenches still provide limitations.
 - Pits near equator welds (HAZ)

- Stains, oxidation, and other processing breakdowns
- Field emission has not gone away
 - Processing breakdowns, often fixed by re-rinse and re-assembly

Recent changes in the 1.3 GHz process

- Short (10 min?) BCP is given prior to the bulk EP
 - Thought to remove weld spit and vapor
- Hydrogen de-gas baking at 800 °C for 2 hrs instead of 600 or 650 °C for 10 hrs.
 - Gain: recrystallization or recovery? Better thermal conductivity
 - Loss: mechanical strength

- Final EP at lower temperature (~25 °C) than the bulk EP (~35 °C)
 - Gain: Smoother surfaces, better control of viscous layer
 - Loss: much lower material removal rate

Project X option at 650 MHz – S. Holmes

SRF Materials Workshop – Tallahassee – 18-20 Feb 2010

‡ Fermilab

Cooley - 9

Impact of 650 MHz PX on materials R&D

- Gradient for 650 MHz is not demanding, surface fields are not encroaching on Nb superconducting surface.
- But 3x more Nb mass, 2x more area, 2x more reaction heat during chemistry for 650 vs 1300 MHz
 - 4 mm thick for mechanical support
- Will BCP be good enough?

- How to predict performance? Dmitri's talk...
 - 3.9 GHz performance showed fantastic performance, as if Rs fell below the BCS prediction ?!??
 - Anomalously high thermal conductivity? No phonon peak has been seen.
 - 650 MHz performance not easy to predict based on present 1.3 GHz Rs data at different temperatures

Niobium used in 3.9 GHz cavity – RRR > 400 Data courtesy of Jun Liu, NHMFL - FSU

SRF Materials Workshop – Tallahassee – 18-20 Feb 2010

‡ Fermilab

Cooley - 14

Processing issues

- Different facilities use different EP parameters & protocols
 - Flow, Temperature, masking, preparation, rinsing, ...
 - What should we change globally? (This workshop)
- Is EP necessary for 325 and 650 MHz?
 - Answer not clear, headroom helps engineering, but complex?
 - What about spoke resonators? EP prior to welding?
- What process monitors are needed?
 - In-line Raman? IR detection?

Fermilab

- What is the future of alternate processing?
 - Tumbling works for bulk removal (Cooper talk), what about final polish? Will it become main-line bulk removal?
- Baking what happens at 800 C vs 600 C?
- Everybody uses 120 C final bake anything to learn?

QA and QC issues

- Inspection everybody can do it now!
 - LEDs are must-have upgrade, excellent clarity
 - Can we get topography directly from images?
- Repair / remediation

- Laser melting doesn't kill a cavity (Mingqi Ge talk)
- Can we raise 20 MV/m to 35 MV/m by repair?
- Thermal mapping still is essential
 - 2nd sound works, could be good processing diagnostic
 - Carbon resistors necessary for detection of pre-heating
 - Cavity mapping systems not making rapid impact

Niobium specification

- Delivered sheet batches seem to be different every time
- Several sheet batches produce cavities that meet or exceed 35 MV/m
- Use ASTM B393-05? FNAL is tighter, but always forces vendors to take exception
 - Flatness needed for ECS. Use x-ray instead?
 - Grain size is ASTM 5 or 4 good enough?
- Is the niobium product over-specified?

芬Fermilab

- Where do we back off, and why? (this workshop)

Conclusion:

Have a great workshop!

Your discussions matter! Your recommendations will have broad impact!