

PROGRESS IN NEAR-FIELD MICROWAVE MICROSCOPY OF SUPERCONDUCTING MATERIALS *Tamin Tai*, <u>Steven M. Anlage</u>

Department of Physics Center for Nanophysics and Advanced Materials University of Maryland 19 February, 2010

Funding from Department of Energy NSF Division of Materials Research Maryland Center for Nanophysics and Advanced Materials

6th SRF Materials Workshop NHMFL, Tallahassee, Florida

APPROACH

GOAL: To establish links between microscopic defects and the ultimate RF performance of Nb at cryogenic temperatures

APPROACH: Work with the SRF community to develop wellcharacterized defects and subject them to 2 forms of microscopy:

Near-Field Microwave Microscopy

Laser Scanning Microscopy

NEAR-FIELD MICROWAVE MICROSCOPY The Idea

- 1) Stimulate Nb with a concentrated and intense RF magnetic field
- 2) Drive the material into nonlinearity (nonlinear Meissner effect) Why the NLME? It is very sensitive to defects...
- 3) Measure the characteristic field scale for nonlinearity: J_{NL}

$$\lambda^2(T, J_{RF}) \approx \lambda^2(T, 0) \left(1 + \left(\frac{J_{RF}}{J_{NL}(T)} \right)^2 \right)$$

How to Generate Strong RF Magnetic Fields?

Magnetic recording heads provide strong and localized B_{RF}

Measured Input Impedance of Write Head

Impedance Matched to 50Ω

Next Generation Experiment

We need higher B_{RF} and strongly localized field distributions

D. Mircea, Phys. Rev. B 80, 144505 (2009)

Cryogenic Chamber

Goals: $B_{RF} \sim 200 \text{ mT}$ Lateral size ~ 100 nm

What do We Learn About the Superconductor?

D. Mircea, SMA, Phys. Rev. B 80, 144505 (2009) + references therein

NEAR-FIELD MICROWAVE MICROSCOPY Expected Outcome

Locally (< 1 μ m) stimulate Nb surface with large (B_{RF} ~ 200 mT) RF field and induce nonlinear response

Map $J_{NL}(x,y)$ and relate to known defects

Catalog of Defects and their Superconducting RF Properties

Defect	Local RF Properties	$J_{NL} (A/m^2)$
Etch Pit		
E-beam Weld		
Step Edge		
Grain Boundary		

Measurements on Tl₂Ba₂CaCu₂O₈Film At a fixed location

Accomplishments

Suppressed background nonlinearity (3f) from write head

Proven that heads are impedance matched

Seeing clear, reproducible signal from superconducting samples

Receiving technical assistance from the magnetic recording industry

Dragos Mircea, Sining Mao (Western Digital) Tom Clinton (Seagate $\rightarrow N^{th}$ Degree)

Unresolved Issues

Not achieving the P_{3f} response levels expected Gap may be too far from sample: Dirt, roughness Gap may be too close to sample: Gap+SC creates large reluctance Stray fields from slider inducing vortices?

Next Steps

Slider gap - sample distance control, and scanning

Experiments in collaboration with Alexey Ustinov and Alexander Zhuravel at Uni. Karlsruhe, Germany

New round of experiments in March+April on bulk Nb + films

13

Conclusions

Near-field microwave microscopy and Laser Scanning Microscopy are quantitative measurement techniques capable of addressing important materials issues in Nb

The microscopes are flexible, simple, broadband, and have frequencyindependent spatial resolution

Looking for materials collaborators with well-characterized local defects

Objectives:

Develop $B_{surf} \sim 200 \text{ mT}$, µm-scale probes for RF Critical Field imaging

Develop compact resonators with Nb coupon samples

Relate local cryogenic RF properties to microstructure

http://www.cnam.umd.edu/anlage/AnlageHome.htm

Magnetic Recording Head Slider

Magnetic Recording Head Cross Section

LASER SCANNING MICROSCOPY The Idea

- 1) Create a compact resonant structure involving a Nb coupon
- 2) While exciting on resonance, scan a focused laser spot on sample
- 3) Image the Photo-Thermal effects:

 $J_{RF}(x, y)$ - RF current density in A/cm² Thermo-Electric imaging $J_{NL}(x,y)$ – Nonlinearity current scale in A/cm² RF vortex breakdown, flow, critical state

4) Relate these images to candidate defects

LASER SCANNING MICROSCOPY Preliminary Results

LASER SCANNING MICROSCOPY Preliminary Results on YBa₂Cu₃O₇ Patterned Film

Reflectivity Image

Thermo-Electric Image (room temperature)

DC Critical State Image $(T < T_c, I > I_c)$

 $J_{RF}(x,y)$ Image (5.5 GHz, T < T_c)

LASER SCANNING MICROSCOPY Preliminary Results

RF Defect Imaging in bulk Nb

LASER SCANNING MICROSCOPY Expected Outcome

Candidate Resonant Structures

Bulk Nb "Short Sample" structures to measure RF breakdown fields and relate to defects and surface processing

Measure RF breakdown fields in SC / Ins / SC / Ins ... multilayer samples Gurevich, Appl. Phys. Lett. (2006)

Image variations in the thermal healing length to better understand the role of heat dissipation in RF performance $\ell = \sqrt{k/c\rho} f$

$$\ell_{thermal} = \sqrt{k / c \rho_m f_{Mod}}$$

PLANS FOR THE FUTURE

Project Timetable

Year	RF B-Field Microscope	Laser Scanning Microscope
1	Develop $B_{RF} \sim 200 \text{ mT}$ probe	Image film + bulk Nb samples from JLab and
	Prelim. measurement of RF critical fields	MSU. Design UMD LSM.
2	Image 1 st -generation "short sample" Nb	Build/test UMD LSM
	RF critical field maps	Image Nb samples, thermal healing length,
		Seebeck coefficient
3	Image 2 nd and 3 rd -generation Nb "short	Operate UMD LSM. Continue above
	samples"	measurements

Laser Scanning Microscope Collaborators:

Dr. Alexander Zhuravel, B. I. Verkin Inst. of Low Temperature Physics Kharkiv, Ukraine

Prof. Dr. Alexey Ustinov, University of Karlsruhe, Germany

We seek representative samples containing well-characterized defects and/or surface treatments

Acknowledgements

Collaborators

- F. C. Wellstood
- R. Ramesh
- J. Melngailis

Graduate Students

David Steinhauer Atif Imtiaz Sheng-Chiang Lee Wensheng Hu Ashfaq Thanawalla Sangjin Hyun (Seoul Nat. Univ.) Dragos Mircea

Undergraduate Students

C. P. Vlahacos Sudeep Dutta Jonah Kanner

Greg Ruchti Akshat Prasad

Post-Docs

Johan Feenstra Andrew Schwartz C. Canedy A. Stanishevsky Alexander Tselev

NSF REU Students

Nadia Fomin (Georgetown) Eric Wang (UC Berkeley) Tom Hartman (Princeton)

Industrial Collaborators

Hans Christen (Neocera) Vladimir Talanov (Neocera → SSM) Robert Hammond (STI) Andrew Schwartz (Neocera) Steve Remillard (Agile Devices)

NEAR-FIELD MICROWAVE MICROSCOPY Preliminary Results

Create a sample with well-characterized defects and probe them with localized RF currents in the superconducting state

Nonlinear Response Image of Known Defect

Bi-Crystal Grain Boundary in YBa₂Cu₃O₇₋₈

Why Develop a Microwave Microscope?

Many cutting-edge materials in condensed matter physics have complicated crystal structures and morphologies

 $Tl_2Ba_2CaCu_2O_8\\$

Extrinsic defects influence, or even define, physical properties: grain boundaries (μm), twin domain boundaries (nm-μm), cracks (μm), competing phases (μm), stacking faults (nm),...

S.-C. Lee, et al., Phys. Rev. B 72, 024527 (2005).

Traditional Electrodynamics Measurements Miss the Important Details

Near Field Microscopy

Breaking the "wavelength barrier"

Basic Contrast Mechanisms

Commercial Near-Field Microwave Microscope Solid State Measurements 6300 NeoMetriKTM

Commercial in-line dielectric metrology tool Developed by Vladimir Talanov and Andrew Schwartz

Nonlinear Superconductor Microscopy/Spectroscopy

Other Forms of Quantitative Microwave Microscopy

Laser Scanning Microscopy (Far Field)

See, e.g. A. P. Zhuravel, et al., Low Temperature Physics 32, 592 (2006)

Spatial Resolution

Modeling and experiment support the result that spatial resolution is given by Max(d, h)

We have shown that high lateral resolution (~2.5 nm) imaging is possible

Sharp probe features (d) give rise to high lateral-wavenumber evanescent waves Close probe/sample separation (small h) couples efficiently to evanescent waves

<u>Other considerations</u>: Store and perturb energy in high- $k_{lateral}$ waves Produce contrast in Δf

$$\vec{S}_{sample} = \frac{1}{2} \vec{E}_{sample} \times \vec{H}_{sample}^*$$

Dissipate energy in sample Produce contrast in Q

0

STM-Assisted Images of Colossal Magnetoresistive ManganiteAM®

 $La_{0.67}Ca_{0.33}MnO_{3}$ 1000Å thick film
600 nm x 600 nm
LaAlO₃ substrate

39 Ultramicroscopy <u>94</u>, 209-216 (2003)

Using methods similar to those for sheet resistance imaging on the 100 μ m scale ...

Transport in Manganites Percolation below T_C

Charge-Ordered-Insulator (COI) and Ferromagnetic Metal (FM) phases have very similar energies

New Modes of Operation of the Microwave Microscope

Comparison of DF with HMDF and HMDF with Tapping

The 5 General Methods of Microwave Microscopy cond-mat/0001075

Δf

Transmission line

Sample

Sample

Δf, Q

R

a) Cavity Resonator with evanescent coupling to sample Used mainly for imaging FMR Frait (1958), Soohoo (1961), Ash (1970), Bhagat (1996)

b) Non-Resonant Reflection/Transmission

Transmission line brings localized signal to sample Bryant (1965), Stuchly (1980), Fee (1989), Keilmann (1989), Tabib-Azar (1993), Stranick (1994), Golosovsky (1996)

c) Perturbed Resonator with localized coupling to sample "Field Enhancement" mechanisms employed Bosisio (1970), Cho (1995), Xiang (1996), UMD (1996)

