Current Status of Dielectric Test Cavity and Wafer Test Cavity

Nathaniel Pogue^{*} P. McIntyre^{*} C. Reece[#] ^{*}Texas A&M University [#]Jefferson National Lab

TE₀₁ cavities aimed at creating short sample RF measurements.

Allen et al. MAG-18 1983								
f (GHz)	$A_{\rm Sample}$	A	rf	R _{sens}	(Ω)	$B_{\rm max}$		
8.6	0.9 cm ²	0.9	cm ²	1 e	-5	Very low		
	Kneisel	et al. A	ASC 1	1986				
f (GHz)	A_{Sample}	A	ıf	R _{sens}	(Ω)	$B_{\rm max}$		
3.5	127 cm ²	127	cm ²	1 e	-9	$2 \mathrm{mT}$		
	Moffat, Rubin et al. 1988							
f (GHz)	A_{Sample}	A,	f	R _{sens}	(Ω)	$B_{\rm max}$		
5.95	20 cm ²	0.2 cm ²		<1.5 e-5		?		
Dela	ven. et al.	J. Şupe	ercond	luctivi	tv. 3	1990		
f (GHz)	$A_{\rm Sample}$	$A_{\rm rf}$		$R_{\rm sens}(\Omega)$	2)	$B_{\rm max}$		
0.17 -	$\sim 1 \ cm^2$	~1 cn	n ²	2e-6		64 mT		
1.5								
Liang, et al. RSI 1993								
f (GHz)	$A_{\rm Sample}$	$A_{\rm rf}$	R _{ser}	_{ls} (Ω)	E	8 _{max}		
	1 1							

2.0

cm²

1e-9

25 mT

4.9

cm²

1.5

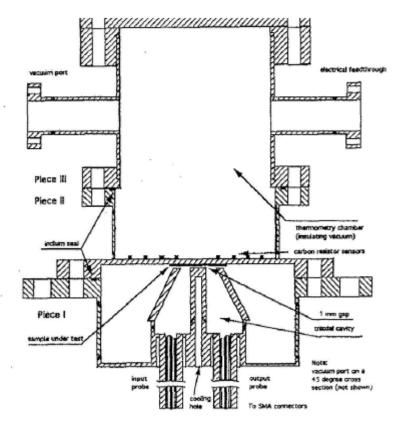


FIG. 1. The assembly consists of three pieces. Pieces I and II are made from reactor grade niobium, and Piece III from stainless steel. Vacuum port of the cavity is not shown.

More TE₀₁ cavities aimed at creating short sample RF measurements Romanenko Cornell SRF Wkshp 2005

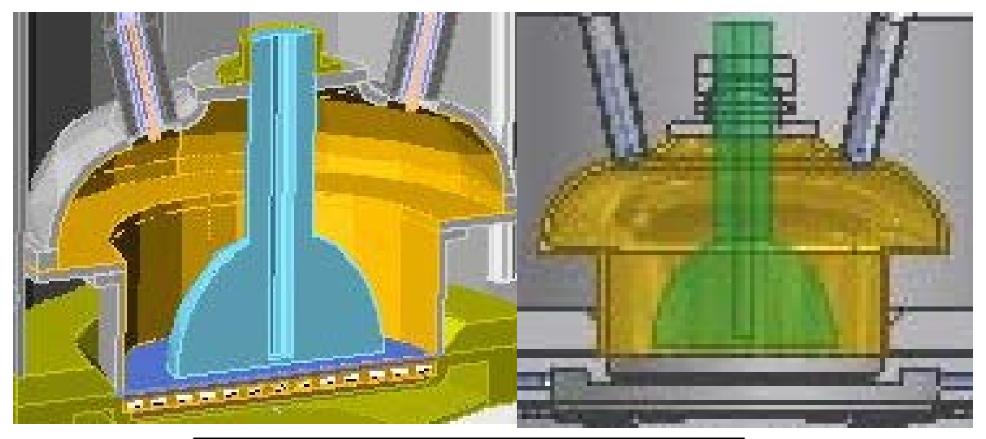
?

<1e-7

Mahner & Weingarten 8th SRF 1997

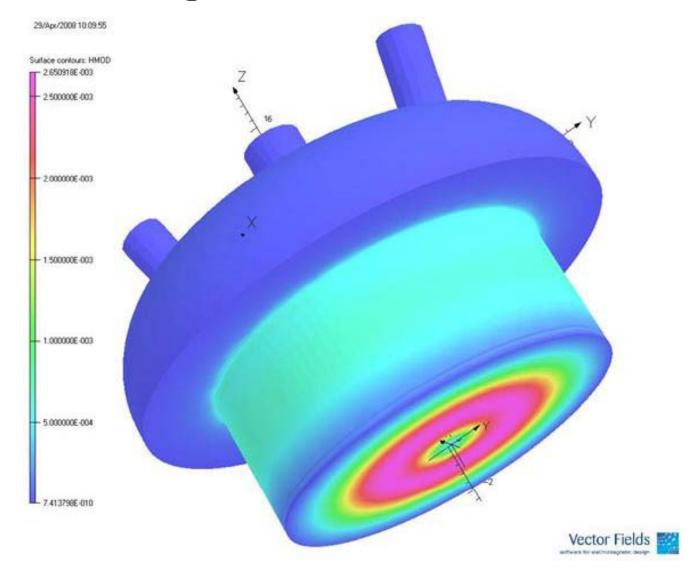
Mainer & Weingarten 8 SKI 1997						
f (GHz)	A_{Sample}	$A_{\rm rf}$		$R_{\rm sens}(\Omega)$		$B_{\rm max}$
1.5	12 cm ²	2 cm	1 ²	1e-6		60 mT
Andre	eone, et al.	SRF Th	in Filr	n Wkshp 2	200	6
f (GHz)	$A_{\rm Sample}$	$A_{\rm rf}$	R_{s}	$sens(\Omega)$		$B_{\rm max}$
7	1 cm ²	1 cm ²	2	1e-5	$0.15 \mathrm{mT}$	
Mahner, Haebel, et al. CERN RSI 2003						
f (GHz)	A_{Sample}	$A_{ m rf}$		$R_{sens}(\Omega)$		$B_{\rm max}$
0.403	44 cm ²	12 cm ²		1e-9 0.		15 mT
Nantista SLAC PAC 2005						
f (GHz)	A_{Sample}	$A_{\rm rf}$		$R_{\rm sens}(\Omega)$		$B_{\rm max}$
11.4	19.6 cm	$\sim 8 \text{ cm}^2$?		?
Delayen, Wang, Phillips						
f (GHz)	A_{Sample}	A	rf	$R_{\rm sens}(\Omega)$	2)	$B_{\rm max}$

0.8 cm²

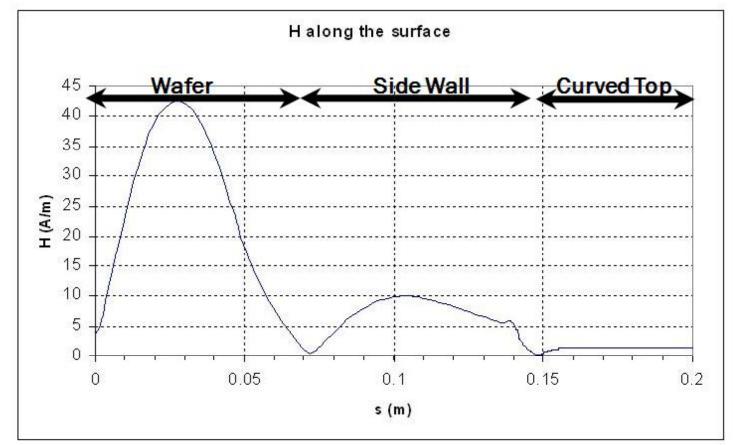

20 cm²

7.5

f (GHz)	A_{S}	Sample A _{rf}		$R_{\rm sens}(\Omega)$		$B_{\max{(\mathrm{mT})}}$	
5.95	35	cm^2	35	5 cm ² 2e-6		45	
		Mart	ens	APL 1	991		
f (GHz)	A_{Sample}		$A_{\rm rf}$		$R_{\rm sens}(\Omega)$		$B_{\max{(\mathrm{mT})}}$
34	35	35 cm ²		12 cm^2		2e-3	?
	Oa	ates, M	oeck	dy AS	C 20	06	
$f(GHz)$ A_{Sam}		ple A _{rf}		$R_{\rm sens}(\Omega)$		$B_{\max(mT)}$	
$0.6 \times n \text{ to } 10 < 0.1 \text{ c}$		m^2 <0.1 cm ² <1 e ⁻¹		< 1 e-7	?		
Taber RSI 1990							
f (GHz)	As	A_{Sample}		$A_{\rm rf}$	$R_{\rm sens}(\Omega)$		B _{max (mT)}
10	1	cm ²	m ² 1		1e-5		?
Ciovati. Kneisel JLab							
f (GHz)	$A_{\rm S}$	$A_{\rm Sample}$		$A_{\rm rf}$	R	$_{sens}(\Omega)$	$B_{\max{(mT)}}$
3.54	22	cm ²	1	8 cm ²		?	50

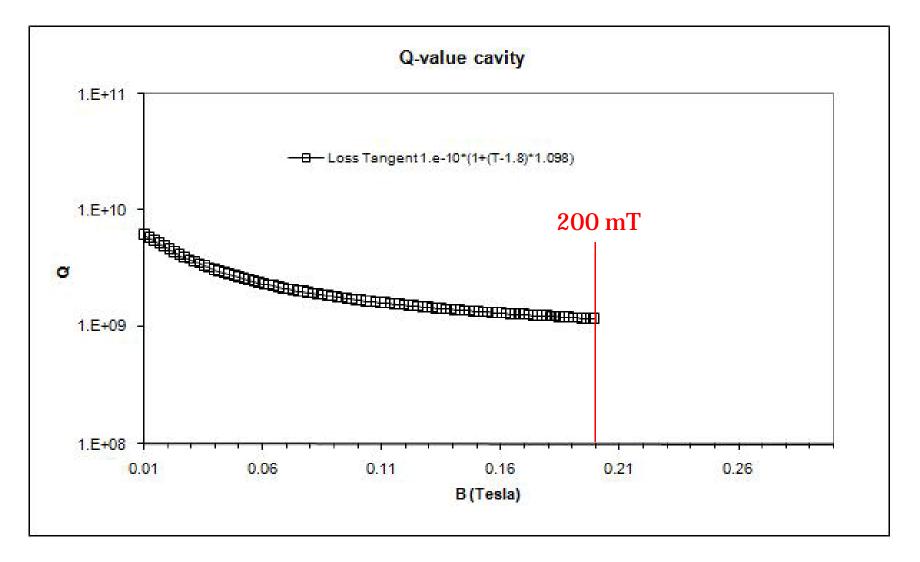

No robust solution is yet in hand, but the chase continues .. - Charlie Reece SRFM 07

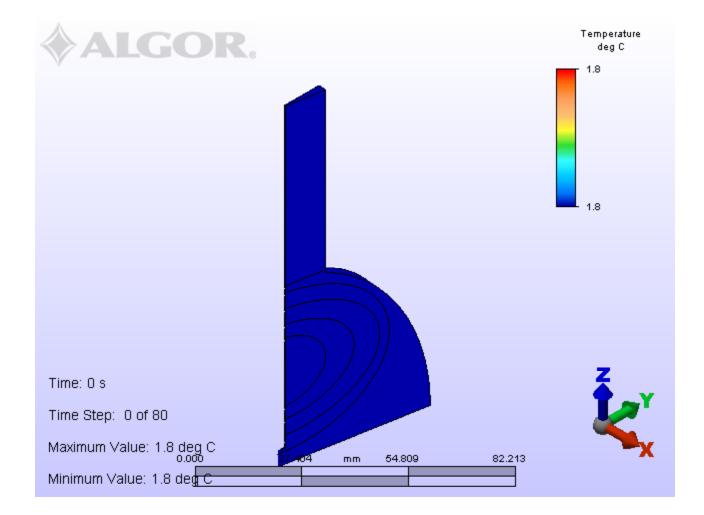
Our solution



f (GHz)	$\mathcal{A}_{\text{Sample}}$	$A_{\rm rf}$	$R_{\rm sens}(\Omega)$	$B_{\rm max}$
1.3	182 cm ²	163 cm ²	10-9	>200 mT

Field Design: H-field Modulus




Field Profile

Four times the field on the sample than on the cavity walls.

Properties: Q-Value vs. H Field

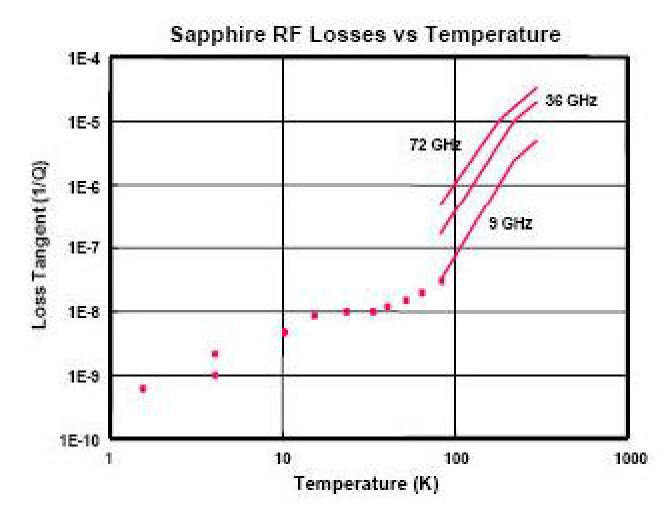
Sapphire Test Cavity

Components Side Port

Sapphire

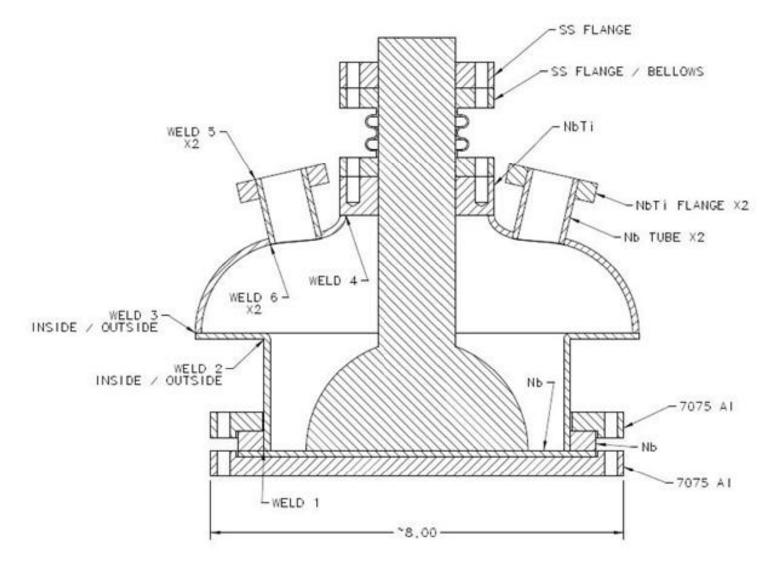
Sapphire for indium seal test

Half cells

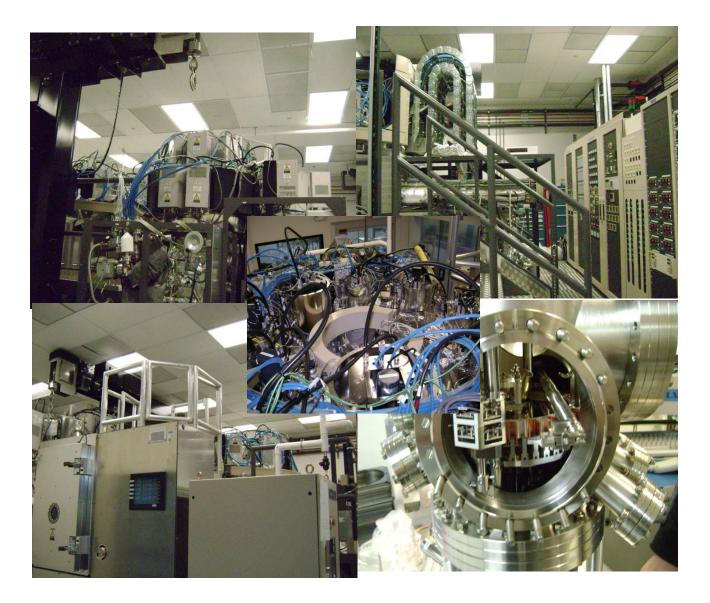

Sapphire is 10.20 cm tall Outer Diameter 5 cm Inner diameter 4.5cm

Beam Tube

Goals


start losstan	1.00E-07	1.00E-08	1.00E-09	1.00E-10	1.00E-11
т					
2	99.999	99.995	99.946	99.463	94.874
4	99.995	99.951	99.508	95.285	66.897
9	99.991	99.914	99.148	92.085	53.775
10	88.304	43.021	7.02	0.749	0.075
ratio sapp/total		in percent			

Taking into account the superconducting transition of indium (over estimated) and niobium. It also takes into account the temperature dependence of niobium's resistance.


Different frequencies

Different materials

Wafer Cavity

ULVAC

Projected Schedule

Date	Milestone	Outcome	Comp. Date
10/09	Initiate mechanical and electromagnetic design of system for loss tangent measurement of large sapphire dielectric	Measurement of loss tangent of HEMEX sapphire at L-band frequencies	05/10
12/10	Initiate fabrication of Test Cavity per TAMU design	TAMU Test Cavity ready for initial testing	05/11
05/11	Begin commissioning Test Cavity with TAMU staff	TAMU Test Cavity functional for material characterization	12/11
02/12	Begin characterization of 6" samples using Test Cavity	High-H-field characterization of SRF sample surfaces	09/12