## Session 6a: Bring us your coupons

- @Cornell (Matthias Liepe, Yi Xie) TE host cavities with high surface fields (100 250 mT) Q vs H Full T mapping of Bottom Plate 2 K Very good Hs/Hc ratios 1.4, 1.57
- Pill-box TE (Ready April)
  - $TE_{011}$ , f = 6 GHz Demountable sample bottom plate  $r_{sample}$  = 3.5 cm
  - $TE_{011}$ , f = 6 GHz Small round sample plate  $r_{sample}$  = 0.25 cm
- High gradient TE cavity, type A (Ready June/July)
  - Demountable sample bottom plate:  $r_{sample} = 5 cm$
  - TE<sub>011</sub>, f = 5 GHz  $r_{sample} = 5$  cm
- High gradient TE cavity, type B
  - Demountable sample bottom plate:  $r_{sample} = 5 cm$
  - TE<sub>012</sub>, f = 4.78 GHz, TE013, f = 6.16 GHz
- @TAMU (Nate Pogue, Peter McIntyre, Charlie Reece-Jlab)
- f=1.4 GHz  $B_{max} > 200 \text{ mT } 2 \text{ K Hs/Hc} \sim 4$ 
  - 02/12 Begin characterization of 6" samples using Test Cavity
  - Quench normally starts on the ring, at half radius where the peak surface field exists
  - High-H-field characterization of SRF sample surfaces 09/12

## Session 6b: Existing Facilities

- @SLAC (*Tsyoshi Tajima-LANL et al.*) 2" diam. Disk
  - 11.4 GHz 50 MW Klystron
  - short pulses (≤ 2 µs) can separate thermal effect
    from critical field
  - TE<sub>013</sub>-mode Cu hemispherical host cavity (cryocooled)
  - Q vs T already compared for ref Nb vs MgB<sub>2</sub> coating

## **Coupon Experiments**

- Relatively low cost
  - Multiple variants fast turnaround 2 or 3 per week?
  - Community needs to guide priorities
  - Q droop still possible with high Hs/Hc
- Re-use instrumentation tmapping etc.
- Small samples = easier to control
  - Easier to characterize afterwards by microscopic techniques
- Are they representative enough of "real" cavities?
  - Flat sheet vs cavity
  - Opportunity as well as hinderance

## Session 6c: "Microscopic techniques"

- @Jlab (Larry Phillips, Daniel Bowring) Local Electronic Mean Free Path Niobium : measurement of  $R_s$  at various frequencies  $\omega_i$ 
  - Possible application to defect scanning in Nb sheet.
- Superconducting coaxial resonator in TEM modes.
  - Resonator and variable coupler are S.C. Nb with sapphire
  - dielectric and are conduction cooled in vacuum to 2K.
  - Measurements of  $R_s$  at various frequencies allows a tomographic reconstruction of Le(x).
- (Preliminary) finite element simulation using CST, electric field at ~28 GHz.
- Any sufficiently high-Q resonator material can be used instead of 2 K Nb.
- Not as good as magnetometer for ferromagnetic defects.
  - Simultaneous multiple frequencies provide better sensitivity.
- @JLAB (Steven Anlage) Near-field Microwave Microscopy Of Superconducting Materials - (Next Generation under development – utilize improvements in HD technology)
- $\sim$ 1 µm stimulate Nb surface with large (B<sub>RF</sub>  $\sim$ 200 mT) RF field and induce nonlinear response.
- Micro-Loops (50 T pulses achieved!)
- Laser Scanning Microscopy (Jlab collaboration (Karlsruhe) and FSU (Abraimov) have YBCO results)
- New Possibilities? Large surface coating MO? Large area PCT