

The Superheating Field of Niobium

Matthias Liepe Nick Valles

Cornell University

Paper: arXiv:1002.3182v1

- Goal of this work: Measure the superheating field of Niobium
 - Temperature dependence (what is the value of the superheating field at ~2K)?
 - How does surface preparation impact the superheating field?
- Approach:
 - Theoretical: solve the Eilenberger equations (Mark Transtrum, Jim Sethna, Cornell)
 - Experimental: measure H_{sh} with pulsed high power in a single cell 1.3 GHz cavity (ML, Nick)

Outline

- Theory: What to expect (at least near T_c)
- Experimental setup: How to measure H_{sh}
- Results: What we got
- Discussion: What it all means
- Future: What we plan to do next

c(0) for Niobium vs. mean free path

Superheating field $H_{sh}(T)$ from the Eilenberger Equations for large κ (courtesy Jim Sethna et al.)

Similar few % effect for Niobium with $\kappa \sim 1?$

Previous results:

Or Measurements: Method and Setup

 Use short (~100 µs) high power pulses to drive 1.3 GHz Niobium cavity (800C, 10 µm EP, 110C bake for 48h)

Diagnostics:

- Temperature sensors in bath and on cavity
 - OST's to locate origin of quench
 - -> can distinguish between quench by local defect and global phase transition at H_{sh}

CW Results at 1.7 – 1.8K

- High $Q_0!$
- 44 MV/m max
- High field Qslope (even after EP and 110C bake)

CW Results: Q(T) at low fields (5MV/m)

• Very low residual resistance of (0.92±0.23) n Ω !

Fit of R_{BCS} with SRIMP

Pulsed Measurements

OST Data: Global phase transition

 All 8 OSTs show that second sound waves arrives first from the nearest high magnetic surface field area on the cavity, and not from a single defect location → global phase transition!

End result: $H_{sh}(T)$ of Niobium with $\kappa = 3.5$

• Within ± 10% error bars:

$$H_{sh} \propto \left[1 - \left(\frac{T}{T_c} \right)^2 \right]$$

down to 1.6 K

 Slop is in very good agreement with prediction from GL theory for material properties measured (κ= 3.5)

Discussion

- For 110-120C baked cavity at low T:
 - Maximum surface field $\approx 2000~Oe \pm 10\%$
 - This corresponds to ~43 MV/m \pm 10% in an ILC shape cavity
- Superheating field should be 20 to 25% higher in an cavity without low temperature heat treatment
 - Need to find alternative method for removing the high field Q-slope without reducing the mean fee path in the surface layer!

- Plan to continue high pulsed power measurement:
 - Study $H_{sh}(T)$ for different surface preparations
 - Baked vs. unbaked
 - BSP vs EP
 - ...
 - Measure $H_{sh}(T)$ for Nb₃Sn cavity
- If you have a cavity with gradients of ~40 MV/m, send it to use for pulsed measurement