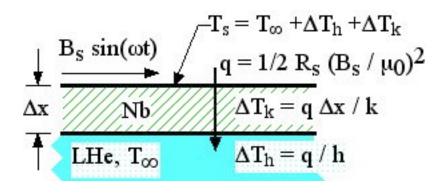
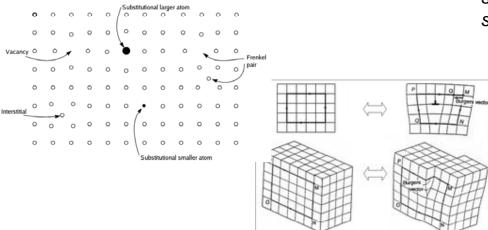
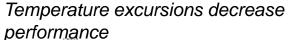
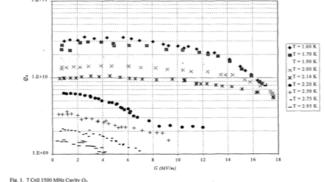
Annealing Temperature Thermal Conductivity of Superconducting Niobium

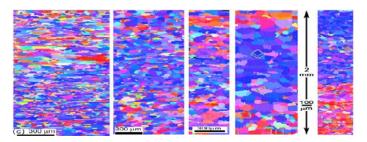
S.K. Chandrasekaran, T.R. Bieler, C.C. Compton, N.T. Wright Departments of Mechanical Engineering and Material Science National Superconducting Cyclotron Laboratory Michigan State University



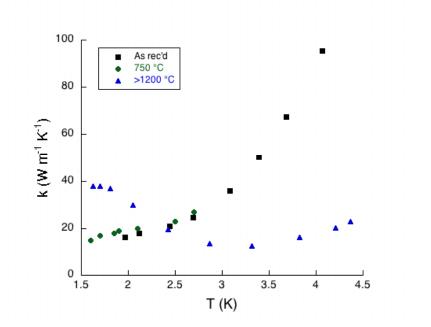

6rd SRF Materials Workshop


National High Magnetic Field Laboratory Tallahassee, Florida


Heat transfer at a cavity wall


Impurities and dislocations can impede conduction heat transfer

High purity Nb commercially rolled can show preferred orientations ({100} near surface and {111} in the interior).

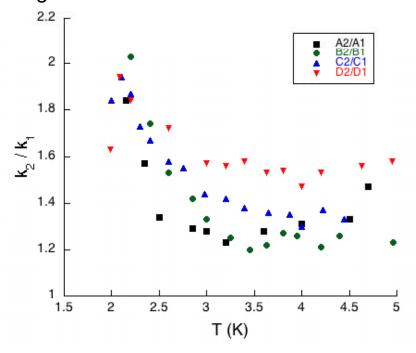


Role of heat treatment on polycrystalline Nb at 4.2 K (Kneisel, 1988)

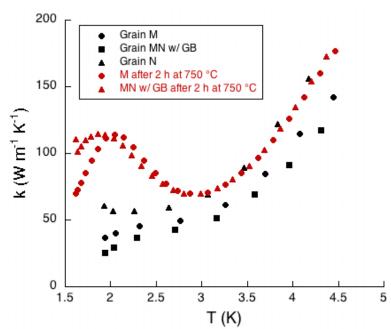
	k (W m ⁻¹ K ⁻¹)				
	as	2 h	6 h	6 h	>10 h
Material	rec'd	2000 °C	1250 °C	1250 °C	1300 °C
		UHV	Ti	Ti	Ti
Fansteel	19	11	49	103	160
WahChang				122	150
Heraeus				80	40

Two heat treatments of polycrystalline Nb (Aizaz, 2006)

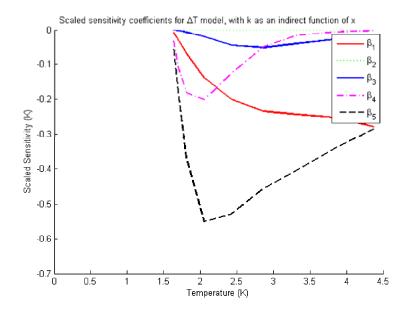
- As received material has no phonon peak and RRR> 350.
- 750 °C for 2 h increased k. somewhat, T < 3 K.
- 1300 °C for 2 h & at 1200 °C for 4 h:
 -- phonon peak, with decrease k.



Large Grain Nb (CBMM) k Mondal et al.


- Four ingots
- As received, after BCP etch (black)
- After 10 h at 600 °C and 10⁻⁶ torr and BCP etch (red)

Ratios of k before and after heat treatment show improvement across the temperature range


Bi-crystal Nb specimens show a similar trend after 2 hr at 750 °C

How does this relate to materials processing? Dislocation density? Grain orientation? Improved thermal conductivity after heat treatments at 600 °C, 750 °C, or >1200 °C

Modeling and parameter estimation to uncover the role of materials processing on the various mechanisms

$$k(T) = R(y) \left[\frac{\rho_{295K}}{L\Pi T} + aT^2 \right]^{-1} + \left[\frac{1}{De^{-y}T^2} + \frac{1}{B\lambda T^3} \right]^{-1}$$

