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Outline

 |ssues —Why do we need to investigate the GB
effects on SRF Nb?

 Localized premature flux penetration at the GB
e Microstructure at the vicinity of the GB

 Field dependent flux flow resistivity of the GB and
its angular dependence.

e Summary
* Current investigation using micro Hall probe
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Why do we investigate the GBs effects on SRF Nb cavity?

GBs may be defects responsible for the degradation of the SRF cavity performance

Figure of merit - Quality factor (Q,)

SRF break down is multiple scales
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GBs can locally reduce superconducting gap (A) and the depairing current density, J, -
suppress the onset of vortex penetration - increase R, - increase power dissipation
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PIT on Cold spot
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“Cold” spot in the high field Q-slope limited (large grain BCP’ed) cavity
- provided by A. Romaneko @ FNAL)
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Description of specific grains and grain boundaries

Large grain Nb sheet from JLAB (p. kneisel and Co-workers)

* “Thinner” GBs have planes which
are closer to the surface
perpendicular. “Thicker” GBs are
inclined ~20-30° from the
perpendicular.

e This as-received slice (RRR ~280,
3.1mm thick) has a very large grain
size (~¥50-100mm), which allowed us
to isolate multiple bi-crystals.

Grain misorientation ~ 25.7 °

Misorientation Profile

Mizcrieriation [degress]
R R R
o =] L% S o o =3 N Y @

Overview of the as-received niobium slice
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Localized and premature flux penetration at the GB

Magneto-Optical Imaging & Surface topology by 3D-
SLCM (Scanning Laser confocal microscope)

— MO imaging by Dr. A.A. Polyanskii (ASC-NHMFL)

e Current percolates
from before onset of
dissipation to well after

e J_of link limited by only
a small number of
existing GBs
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Flux penetration and its correlation to direction of H,,,

Lack of flux penetration at tilted GB Asymmetric preferential flux penetration (H,,.//GB)

Top & Bottom  ZFC T=6K 100 min BCP after extraction

100min BCP H=80mT H=120 mT
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Flux did not preferentially penetrate along the GB, in spite of the large mis-orientation of the H_,, vector
and the bulk pinning of magnetic flux is symmetric and only the flux penetration is asymmetric.
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Do BCP and EP have different effects on flux penetration?

BCP’ed

—

ZFC T=6K
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GB is a weak link only when H_,, is aligned parallel with the GB plane
The GB groove may not the cause of the preferential flux penetration
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Microstructure at the vicinity of GB

Transmission Electron microscopy using state-of-art FIB
technique and conventional sample prep. (by BCP)
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What is the real microstructure at the GB after BCP?
HRTEM used to observe the vicinity of the GB

. Possible dislocations
Cross sectional view of GB Plane-view of GB pile up at G.B

dislocation
loops
Vs
dislocations
et i\ A
{ - v VW
Prepared by FIB Prepared by BCP &
Nb oxides layers Dark contrast due to mechanical polishing....

/ rrrrrrrrrr due

high mis-orientation

Coherence length of Nb (= 40nm) >> HTS (= few nanometers)
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Field dependent flux flow resistivity of the GB
and its angular dependence.

The depairing critical current density & suppression of
superconducting order parameter at the GB: DC transport
V-1 characterization with 1T Electro-magnet
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Very weak ~20-30 mT

dissipation / Expand the gap between H_, (170mT) and H_, (200mT)
at 4.2 K - Make vortex penetration at lower H,,,

Strong vortex
dissipation
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The procedures

. 1. Cut samples into I-shape with wire-EDM
0 HeiHe He 2. Mechanically grind down the bottom of the
200mT sample surface to ~150-250um, so the top
surface remain as-received condition
As-received Mechanically ground 3. Ultra fine polish with vibratory polisher
(Vibromet ® Buehler)

4. Finalize all surfaces with either BCP or EP
- Make surfaces representative of real cavity surface

5. Further reduce the bridges of some I-shape
single- & bi- crystals with extra BCP

6. Artificially groove with FIB and mechanically
smear away the grooved produced by the
chemical treatments

Surface image of I-shape sample after BCP treatment
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Surface topology of the variously treated samples

BCP’ed Bi xtal EP’ed Bi xtal Flattened Bi xtal

No groove effect
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Preferential flux flow on the deep GB groove

No groove (~0.5-2.0um roughness) A deep (3-5um) and highly inclined groove
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* Flux flow evidence from H=0.08 Tto 0.28 T

* The V-J characteristics show that the grain boundary is a channel of preferential flux flow (FF) by
weakly pinned vortices.

* However, the slightly non-ohmic V-I response suggests that flux flow is not just confined to a single
vortex row flowing along the grain boundary
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Field dependent GB resistivity : R(H)

Multi vortex rows
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Preferential GB flux flow is not associated with the GB groove —
still present after smooth mechanical polishing

Very flat surface by ultra-fine mechanical polishing

V-J response [log-log] V-J response [Linear]
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* Linear GB flux flow of vortices starts at H_,, = 0.08T
* Very similar behavior to BCP’ed bi-crystal
* AtH_,, = 0.08 T, the # of vortices rows flowing at the GB are ~4.90, then the # rapidly increases

as applied current increased (finally ~33.51) — Multi flux flow rows
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Little evidence for GB flux flow for EP bi-crystal

Shallow (~0.5-2.0um) groove at the electropolished GB

Log-log coordinates Linear coordinates
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* However, traces of flux flow along the GB are visible
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Dissipation is enhanced when the angle between H,,,,
and GB is minimized

BCP’ed Bi crystal Mechanically flattened
(a deep groove) Bi crystal (No groove) The number of degrees
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The proposed work: the depairing current density at GB

7° [001] tilted YBa,Cu,0 , ,GB

BCP’ed Nb Bi-crystal (26° misoriented GB)
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Measurement of field enhancement at GB using
micro Hall probe (50 um by 50 um)

Response voltage on Hall probe . Topology at the GB (LSCM)
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Summary

e MO imaging showed that GBs can preferentially admit magnetic flux
before it is admitted to grains when GB is aligned close to H_,

e Combining MO with LSCM, we were able to show that topological features
introduced by BCP or EP were not the cause of the preferential nucleation
of magnetic flux.

e TEM showed 5-7nm thick niobium-oxide layers with no evident GB
penetration, in strong contrast to Halbritter’s model.

 Transport measurements on BCP’ed samples showed clear evidence of
preferential GB flux flow enhanced when plane of GB is parallel to the H_,
vector.

e Direct correlation of local H at GB shows that flux flow corresponds to GB
flux entry
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Field dependent flux flow resistivity of the GB

Dissipation at a straight YBCO GB occurs by slippage of the vortex chain in the GB — HTS
GBs easily have depressed superconductivity
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Obtaining both B & H on the bi-crystal using a Hall sensor

Micro Hall probe BCP’ed Nb bi-crystal

=
~~~~~~ GB
Hall probe sensor
Micro Hall probe Micro Hall arrays  {oym10um
Spec: ~ 2mm by 2mm 10
! H um§
* Total thickness: ~0.4mm A | /
* 0.4mm thick GaAs substrate —_/’—i:-_,—_,—_,—/
* 5um thin InSb layer o \
* Activation area: 50um by 50 um + + + + 2DEG
* Minimum distance between the . S Chmmw — — SN
sample surface and the Hall probe is - ®H - - - :
~0.2mm Vs VvV, V, V,
Fabricated by Dr. Milan Polak (2009 GaAs/AlGaAs heterostructure
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Mechanisms of suppression of flux flow on the GB
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*  Viscous fluxmotion  V=(I-1)R

*  R(B)is independent of B, if a single vortex

chain moves along GB, while / > a

Gurevich et al. PRL 88, 097001 (2002)
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J. enhancements on meandered GBs of YBCO

Planar GB (PLD) Meandered GB (PLD & MOD)
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Field enhancement by severe surface topology @GB

Mo contrast due to topological defects

Hext//Surface -A—*-‘!$—
m

WELDED AREA: Machine marks (like grooves), large
grains and height steps at GBs are well visible

Flattened Post-BCP

As-received Flattened Post-BCP
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