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To permit more rapid variation in modeling of the front end of the Muon Collider/Neutrino
Factory, the axial magnetic field (of the axially symmetric capture/transport system) could
be specified analytically. Then, the off-axis magnetic field could be approximated via the
series expansions
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∑
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where

a
(n)
0 =

dna0

dzn
=

dnBz(0, z)

dzn
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as derived in the Appendix.
The magnetic field should vary “slowly”, such that the quantity

Φ = πρ2Bz =
πc2p2

⊥
e2Bz

(4)

is an adiabatic invariant, where

ρ =
p⊥c

eBz
=

p⊥ [MeV/c]

3Bz [T]
cm (5)

is the radius of the helical trajectory of a particle (muon or pion) of charge e and transverse
momentum p⊥, Bz is average axial magnetic field inside the helix, c is the speed of light,
and the last form of eq. (4) holds in Gaussian units. By “slowly”, we mean that the relative
change in Bz is small over one turn of the helical trajectory, whose period λ in z is

λ =
2πpzc

eBz
=

2.1pz [MeV/c]

Bz [T]
cm, (6)

where pz is axial components of the particles momentum. For example, in the so-called Study
2 Neutrino Factory design [2] we desire to capture pions with pz

>∼ 100 MeV/c, as shown
in the figure on the next page (which is a projection of Fig. 4b of [3]). In this case we are
interested in trajectories with period λ as short as ≈ 2 m / Bz [T]. Then, for Bz ≈ 20 T, the
axial field should not vary significantly over Δz = 10 cm, while for Bz ≈ 2 T the variation
in field should be small over a meter. These criteria are readily satisfied in our designs, such
that the quantity (4) will be an adiabatic invariant to a good approximation.

1



1 Gaussian Approximation to the Field Near z = 0

It has become the convention in simulations of the Muon Collider/Neutrino Factory front
end to define z = 0 to be the downbeam “end” of the pion-production target. The MARS
code is used to simulate pion production in this target (whose position is approximately −60
cm < z < 0) and transport these pions to the plane z = 0, after which they are modeled
using ICOOL or other codes.

The magnetic field near z = 0 used in MARS simulations of the Study-2 front end is
based on a table with Δr = 3 cm and Δz = 10 cm, as shown in the figures below.1
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1http://www.hep.princeton.edu/~mcdonald/mumu/target/taper.xls
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The axial field near z = 0 is well approximated by the Gaussian form,

Bz(r, z) = B0e
−(z−z0)2/2σ2

, (7)

with B0 = 20 T, z0 = −25 cm and σ = 75 cm.
Then, the radial field near z = 0 is well approximated by the first-order form (33)

Br(r, z) ≈ −r

2

∂Bz(0, z)

∂z
, (8)

with the derivative based on the Gaussian form (7).
Near z = 25 cm the second derivative of the axial field goes to zero, and the Gaussian

approximation misestimates the radial field. However, we will use the Gaussian form only
at z = 0 to match to better analytic forms for the field at z > 0.2

2 Analytic Forms for an Adiabatic Taper

Here, we consider analytic forms for the axial field, Bz(0, z), that makes a transition from a
high axial field B1 for z < z1 to an approximately constant, weaker axial field B2 for z > z2.
In principle, the axial field and all derivatives (3) should be continuous at z1 and z2, such
that if the field outside the interval [z1, z2] were truly uniform, then all derivatives of Bz

would vanish at z1 and z2. In a previous study [1] of the front-end system not even the first
derivative of the axial field was continuous at z1 and z2.

The analytic forms will be based on functions of polynomials. A polynomial of odd order
2n − 1 has 2n constants, which can be chosen to match the axial field, and its first n − 1
derivatives at the two points z1 and z2. For present purposes it will likely be sufficient
to match only the field and its first derivative, so we focus on cubic polynomials. Should
matching of higher derivatives be desired later the method can be readily extended to do so.

2The radial field used in the Study 2 simulation is slightly nonzero at r = 0, due to the presence of
off-axis holes in the upstream iron “plug”.
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We restrict our attention to the case that the field is constant for z ≥ z2, although the
forms given here could be generalized to include nonzero derivatives at z2.

2.1 Cubic Taper

The simplest use of a cubic polynomial approximation to the axial field on the interval [z1, z2]
can be written as

Bz(0, z1 < z < z2) = B1 + B ′
1(z − z1) + a2(z − z1)

2 + a3(z − z1)
3, (9)

where the first two coefficients have be chose to match the field B1 = Bz(0, z1) and its first
derivative B ′

1 = ∂Bz(0, z1)/∂z at z1 at z1. Then, the polynomial (9) will also match the field
B2 and its derivative B ′

2 at z2 by setting

a2 = 3
B1 − B2

(z2 − z1)2
− 2B ′

1

z2 − z1
, and a3 = 2

B1 − B2

(z2 − z1)3
+

B ′
1

(z2 − z1)2
. (10)

The characteristic length of the taper is not an independent parameter, but it can be adjusted
by varying z2, the position at which the taper ends.

As an example, the plot below shows the taper according to eq. (9) that matches to the
Gaussian form (7) for z ≤ 0 and which goes to B2 = 2 T at Z2 = 10 m (where the slope B ′

2

is zero. While the curve satisfies the specified conditions at z1 and z2 the axial field is not
monotonically decreasing, and actually goes negative for 5 < z < 6 m. Hence, we consider
other forms for the taper, based on functions of cubic polynomials
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2.2 Inverse-Cubic Taper

Kevin Paul [1] suggests use of an inverse-cubic form,

Bz(0, z1 < z < z2) =
B1

[1 + a1(z − z1) + a2(z − z1)2 + a3(z − z1)3]p
, (11)
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for any nonzero power p. This form matches to B1 and B ′
1 at z1 with the choice3

a1 = − B ′
1

pB1

. (12)

Matching to B2 and B ′
2 = 0 at position z2 determines the coefficients a2 and a3 to be

B2 =
B1

[1 + a1(z2 − z1) + a2(z2 − z1)2 + a3(z2 − z1)3]p
, (13)

and
0 = a1 + 2a2(z2 − z1) + 3a3(z2 − z1)

2, (14)

which imply that

a2 = 3
(B1/B2)

1/p − 1

(z2 − z1)2
− 2a1

z2 − z1
, and a3 = −2

(B1/B2)
1/p − 1

(z2 − z1)3
+

a1

(z2 − z1)2
. (15)

The inverse-cubic tapers with p = 1 and 2 for the example of sec. 2.1 is shown in the
figure on the previous page. The results are rather satisfactory.

2.3 Exponential Taper

Another function of a cubic polynomial that yields a satisfactory taper is an exponential, A
simple form of an adiabatic taper of a characteristic length Δ in z is a Gaussian form.

Bz(0, z1 < z < z2) = B1e
a1(z−z1)+a2(z−z1)2+a3(z−z3)3, (16)

where matching to B ′
1 at z1 and to B2 and B ′

2 = 0 at z2 determines the coefficients to be

a1 =
B ′

1

B1
, a2 =

3 ln(B2/B1)

(z2 − z1)2
− 2a1

z2 − z1
, and a3 = −2 ln(B2/B1)

(z2 − z1)3
+

a1

(z2 − z1)2
. (17)

In the example on the previous page, the exponential of a cubic polynomial yields a curve
that differs only slightly from the inverse polynomial with p = 1 and is essentially identical
to that for p = 2. A greater difference between the inverse cubics and exponential of a cubic
is seen in an example where both B ′

1 and B ′
2 are zero, as shown in the figure on the next

page. There, the inverse cubic leads to a more rapid taper than does the exponential form,
and all of these are more rapid that the symmetric taper based on basic cubic form (9).

3Actually, parameter a1 was set to zero in many implementations of the form (11), so the slope B′ was
not continuous at z1 in those studies.
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A Appendix: Expansion of an Axially Symmetric

Magnetic Field in Terms of Its Axial Field

Suppose a magnetic field in a current-free region is rotationally symmetric about the z-axis.
Then,

B = Br(r, z)r̂ + Bz(r, z)ẑ (18)

in cylindrical coordinates. If we write

Bz(r, z) =
∞∑

n=0

an(z)rn, and Br(r, z) =
∞∑

n=0

bn(z)rn , (19)

then a0(z) = Bz(0, z). Since the divergence of the magnetic field vanishes, the proposed
expansions (19) obey

∇ · B =
1

r

∂Br

∂r
+

∂Bz

∂z
=

∑
n

[
(n + 1)bnrn−1 + a(1)

n rn
]

= 0, (20)

where a(m)(z) ≡ dma/dzm. For this to be true at all r, the coefficients of rn must separately
vanish for all n. Hence,

b0 = 0, (21)

bn = − a
(1)
n−1

n + 1
. (22)

Since the curl of the magnetic field also vanishes (outside the source currents),

(∇ × B)θ =
∂Br

∂z
− ∂Bz

∂r
=

∑
n

(
b(1)
n rn − nanr

n−1
)

= 0 , (23)
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Again, the coefficient of rn must vanish for all n, so that

b(1)
n = (n + 1)an+1. (24)

Using eq. (24) in eq. (22), we find

bn = − b
(2)
n−2

(n + 1)(n + 3)
. (25)

Since b0 vanishes, b2n vanishes for all n, and from eq. (24), a2n+1 vanishes for all n. Then,
using eq. (25) in eq. (24), we find

a2n = −a
(2)
2n−2

4n2
. (26)

Repeatedly applying this to itself gives

a2n = (−1)n a
(2n)
0

22n(n!)2
. (27)

Inserting this in eq. (22), we get

b2n+1 = (−1)n+1 a
(2n+1)
0

22n+1(n + 1)(n!)2
. (28)

Combining eqs. (27)-(28) with eq. (19), we arrive at the desired forms,

Bz(r, z) =
∑
n

(−1)na
(2n)
0 (z)

(n!)2

(
r

2

)2n

, (29)

and

Br(r, z) =
∑
n

(−1)n+1 a
(2n+1)
0 (z)

(n + 1)(n!)2

(
r

2

)2n+1

, (30)

for the field components, where

a
(n)
0 =

dna0

dzn
. (31)

These results are overly detailed for some purposes. If one is interested only in the leading
behavior at small r, then eqs. (29)-(30) simplify to

Bz(r, z) ≈ Bz(0, z), Br(r, z) ≈ −r

2

∂Bz(0, z)

∂z
. (32)

The result for Br also follows quickly from ∇ · B = 0, according to eq. (20),

Br(r, z) = −
∫ r

0
r
∂Bz(r, z)

∂z
dr ≈ −

∫ r

0
r
∂Bz(0, z)

∂z
dr = −r

2

∂Bz(0, z)

∂z
. (33)

It is also instructive that the approximation (33) can be deduced quickly from the integral
form of Gauss’ law (without the need to recall the form of ∇ ·B in cylindrical coordinates).
Consider a Gaussian pillbox of radius r and thickness dz centered on (r = 0, z). Then,

0 =
∫

B · dS ≈ πr2[Bz(0, z + dz) −Bz(0, z)] + 2πr dz Br(r, z)

≈ πr2 dz
∂Bz(0, z)

∂z
+ 2πr dz Br(r, z) , (34)

which again implies eqs. (32).
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