STAR Goals for Magellan

12 Mar 2010

- People
 - Leve Hajdu, BNL, grid developer
 - Jerome Lauret, BNL, STAR Computing Leader
 - Doug Olson, LBNL, STAR-OSG liaison...
 - Others at BNL and LBNL
 - Collaboration with Kate Keahey/NIMBUS at ANL
- Primary data center is bnl.gov
- Major analysis facility is nerc.gov
- www.star.bnl.gov

STAR Goals for Magellan

- The primary motivation of STAR is to be able to deploy/instantiate a full system image including STAR-specific software in order to perform reliable data analysis and simulations.
 - This can be either or both of virtual machines or booting on bare metal, with the deciding factor being practical technical issues and performance.
- Next 4 slides illustrate VM/cloud modes that STAR has tried, followed by two slides of specific goals for Magellan.

3 Models

Amazon EC2 with Nimbus Interface

Clemson Model Cl#1

Condor – VM Model G#1

Amazon EC2 With Nimbus Interface Model

Pro Con

- -Guarantee on the number parallel slots (not a hard requirement HENP (embarrassingly parallel))
- -Runs one job after the other without needing to boot up a new VM -Submitting site is
- -Base images need to be provided by host site
- -Contextualization waste on start-up and shutdown

■-Submitting site is managing everything ▶

The Clemson Model CI#1

Pro	Con
-Most transparent to the user	-Batch worker MUST be supported by VM OS -Batch worker installed by host site into image (this is a lot of work for the host site)

Condor – VM Model G#1

-Can run a large variety of images

(No site specific base image needed, no contextualization)

-User must be trusted to shutdown the VM
-User must figure out how to pull job in
-Booting for each job is inefficient (multi-job submission framework must be supplied by user)

STAR Workflows for Magellan

- STAR Workflows: all single processor / job
 - Production: CPU-intensive, GB/job I/O, hours/job, GB/job memory, managed data (simple mapping between data and job)
 - Simulation: KB/job input, GB/job output
 - Reconstruction: GB/job input, 10s MB/job output
 - Embedding: GB/job input, GB/job output
 - User Analysis: mix of I/O intensive, CPU-intensive, large memory
 - Typically GBs/job input, MBs/job output
 - Job length & memory vary per analysis type
 - Data challenge: input data size (# files, GBs) per job job depends on analysis & compute resources
- Platforms
 - Magellan Batch
 - Magellan Eucalyptus
 - Future: Maybe Amazon EC2
 - Possible application for surge computing

STAR Experiments

- Initial work: Use tested distributed model
 - OSG / Globus interface to dynamic cluster of known characteristics: batch system, job slots, resources per job
 - Worker node lifetime spans many jobs
 - Worker node images built with STAR software + worker nodes client tools (as exists on PDSF)
 - Successful production with ~100 node cluster with NIMBUS+EC2 to meet short term needs
- Alternative model for testing: Simple simulation job in a VM
 - Job is packaged within VM to start on image boot
 - Job requests parameters from outside source, ships results when done
 - Job completion triggers image shutdown
 - Initial tests on EC2, larger testing under development at Wisconsin