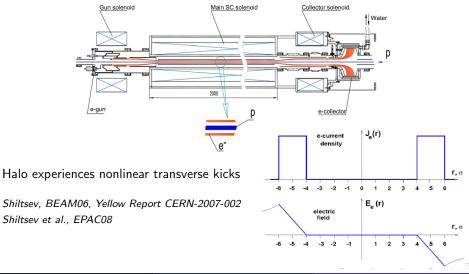
Collimation with hollow electron beams

A. Drozhdin, V. Shiltsev, G. Stancari, D. Still, A. Valishev, L. Vorobiev (FNAL) G. Kuznetsov, A. Romanov (BINP Novosibirsk / FNAL) J. Smith (SLAC)

> U.S. LHC Accelerator Research Program Collaboration Meeting 14 26–28 April 2010



- LHC collimation system: graphite primaries at 6σ from core, secondaries at 7σ
- No beam scrapers in LHC: intolerable material damage below 5 σ
- Great interest in investigating magnetized hollow electron beams as collimators/scrapers

Concept of hollow electron beam collimator (HEBC)

Cylindrical, hollow, magnetically confined, (pulsed or dc) electron beam overlapping with halo and leaving core unperturbed

- ullet electron beam can be placed close to core (\sim 3–4 σ), no material damage
- size of electron beam in overlap region r_{main} determined by 'compression ratio' of gun to main solenoid strength:

$$r_{\rm main} = r_{\rm gun} \sqrt{\frac{B_{\rm gun}}{B_{\rm main}}};$$

range of available beam sizes determined by transport efficiency, instability thresholds, and magnet technology

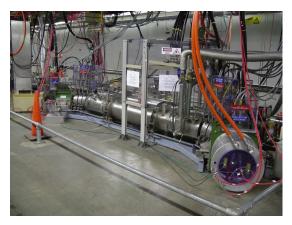
- kicks are small and not random in space or time:
 - removal is gradual, no loss spikes due to beam jitter on hard-edge collimators
 - resonant excitation tuned to betatron frequencies is possible

イロト イポト イヨト イヨ

In cylindrically symmetrical case,

$$\theta_{r} = \frac{2 I_{r} L \left(1 \pm \beta_{e} \beta_{p}\right)}{r \beta_{e} \beta_{p} c^{2} (B \rho)_{p}} \left(\frac{1}{4\pi\epsilon_{0}}\right) \quad \begin{array}{c} -: \quad \mathbf{v}_{p} \cdot \mathbf{v}_{e} > 0\\ +: \quad \mathbf{v}_{p} \cdot \mathbf{v}_{e} < 0\end{array}$$

Example (TEL2, $\mathbf{v}_{p} \cdot \mathbf{v}_{e} > 0$): $I_{r} = 2.5$ A, L = 2.0 m, $\beta_{e} = 0.19$ (10 kV), r = 3.5 mm (5 σ)

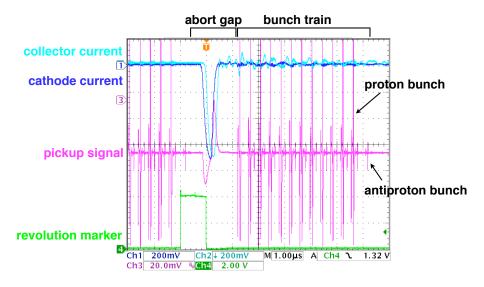

p energy (TeV)	0.150	0.980	7
kicks (μ rad):			
hollow-beam max	2.4	0.36	0.051
collimator rms (Tevatron)	110	17	
collimator rms (LHC)			4.5

< ロ > < 同 > < 三 > < 三

- position controlled by magnetic correctors, no motors or bellows
- no ion breakup
- axial magnetic field ensures low impedance, stable beam; reducing the field allows greater range in radii, but may cause instability if residual electric field in hole is nonzero
- abundance of theoretical modeling, technical designs, and operational experience on interaction of keV–MeV electrons with MeV–TeV (anti)protons
 - electron cooling
 - Tevatron electron lenses

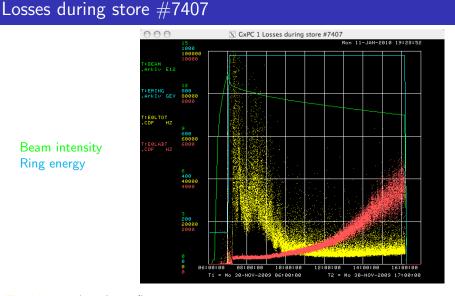
Existing Tevatron electron lenses

TEL1 used for abort-gap clearing during normal operations
TEL2 used as TEL1 backup and for studies



Shiltsev et al., Phys. Rev. ST AB **11**, 103501 (2008) Shiltsev et al., New J. Phys. **10**, 043042 (2008)

Typical parameters			
Peak energy	10 keV		
Peak current	3 A		
Max gun field B_g	0.3 T		
Max main field B_m	6.5 T		
Length <i>L</i>	2 m		
Rep. period	$21~\mu s$		
Rise time	${<}200~{\rm ns}$		


Image: A matrix and a matrix

TEL2 timing example

< □ > < ^[] >

Beam intensity **Ring energy**

Total losses show large fluctuations Abort-gap losses are smooth (TEL1 clearing)

G. Stancari (Fermilab)

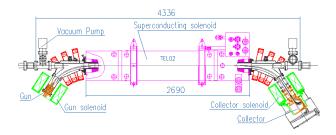
LARP CM14 : 26-28 Apr 2010 9 / 34

< ロ > < 同 > < 三 > < 三

- hollow beams can be unstable due to space charge forces
- alignment of electron beam is critical
- cylindrically symmetric current distribution ensures zero electric field on axis; if not, mitigate by
 - segmented control electrodes near cathode
 - $\bullet\,$ crossed-field $(\textbf{E}\times\textbf{B})$ drift of guiding centers
- large amplitude functions at collimator preferred, to translate transverse kicks into large displacements
- if proton beam is not round $(\beta_x \neq \beta_y)$, separate horizontal and vertical scraping is required
- cost: \approx 5 M\$ (2 M\$ material and supplies, 3 M\$ salaries)

(日) (同) (三) (三)

Modeling


kick maps

in overlap region

- analytical form ideal case
- 2D from measured profiles Poisson solver
- 3D particle-in-cell Warp code (LBNL), effects of
 - TEL2 bends
 - profile evolution
 - alignment

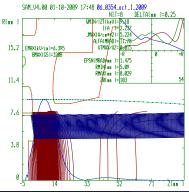
⇒ tracking software with lattice and apertures

- STRUCT
- lifetrac
- SixTrack
- DMAD

< □ > < ^[] >

Studied halo lifetimes, impact parameter, resonant excitation:

- 1D model (V. Shiltsev, FERMILAB-CONF-07-69)
- STRUCT model of Tevatron (A. Drozhdin)
- lifetrac model of Tevatron and LHC (A. Valishev)
- SixTrack model of LHC (Smith et al., PAC09, SLAC-PUB-13745)


Image: A matrix and A matrix

- HEBC as 'soft-edge' scraper to complement/improve traditional collimation system
- Fast cleaning ('collimation') would require much higher electron currents
- HEBC may allow collimators to be retracted (probably not feasible in LHC)
- resonant kicks are very effective
- effects should be detectable in Tevatron

Design of 15-mm-diameter hollow gun

- $\bullet\,$ Convex tungsten dispenser cathode with BaO:CaO:Al_2O_3 impregnant
- 7.6-mm outer radius, 4.5-mm-radius bore
- Electrode design based upon existing 0.6-in SEFT TEL2 gun

Calculations with SAM code (L. Vorobiev)

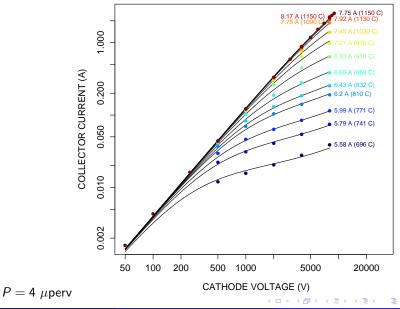
Mechanical design (G. Kuznetsov)

Cathode (w/o bore)

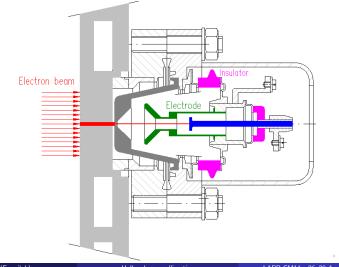
Image: A matrix and a matrix

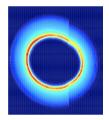
Assembled gun

- - E > - - E

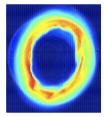

Test bench at Fermilab

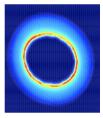
Built to develop TELs, now used to characterize electron guns and to study plasma columns for space-charge compensation

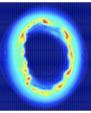

- High-perveance electron guns: ~amps peak current at 10 kV, pulse width ~µs, average current <2.5 mA
- Gun / main / collector solenoids (<0.4 T) with magnetic correctors and pickup electrodes
- Water-cooled collector with 0.2-mm pinhole for profile measurements

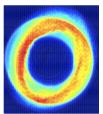

Performance of hollow gun vs voltage and temperature

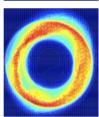


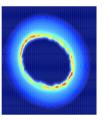

Profile measurements

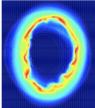

- Horizontal and vertical magnetic steerers deflect electron beam
- Current through 0.2-mm-diam. pinhole is measured vs steerer strength

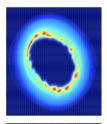


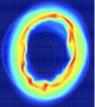












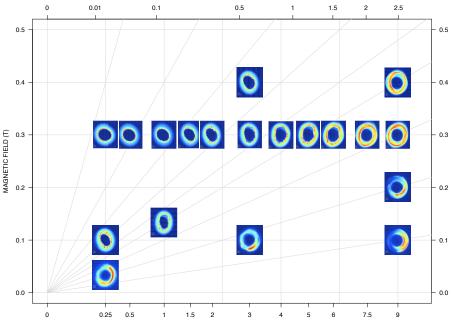
Profile evolution with increasing current and voltage

G. Stancari (Fermilab)

Hollow beam collimation

LARP CM14 : 26-28 Apr 2010 18 / 34

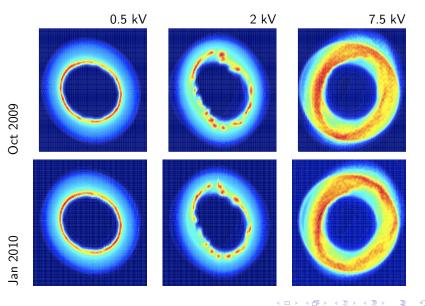
Hollow-beam instabilities


- Profiles measured 2.8 m downstream of cathode
- In previous plots, magnetic field kept constant at 0.3 T
- If current density is not axially symmetric, neither are space-charge forces
- Guiding-center drift velocities ${f v} \propto {f E} imes {f B}$ depend on r and ϕ
- Electron beam behaves like incompressible, frictionless 2D fluid
- Typical nonneutral plasma slipping-stream ('diocotron') instabilities arise, vortices appear

Kyhl and Webster, IRE Trans. Electron Dev. **3**, 172 (1956) Levy, Phys. Fluids **8**, 1288 (1965) Kapatenakos et al., Phys. Rev. Lett. **30**, 1303 (1973) Driscoll and Fine, Phys. Fluids B **2**, 1359 (1990) Perrung and Fajans, Phys. Fluids A **5**, 493 (1993)

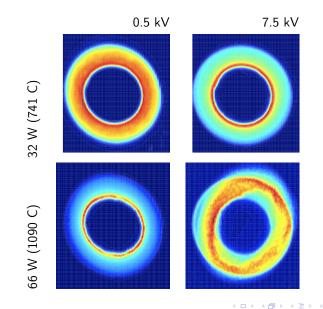
Current-density distribution evolves as the beam propagates

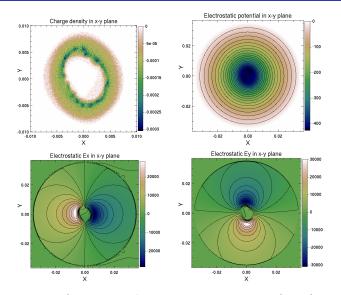
(evolution time) $\propto \frac{(\text{current})}{(\text{magnetic field}) \times (\text{voltage})}$


BEAM CURRENT (A)

CATHODE VOLTAGE (kV)

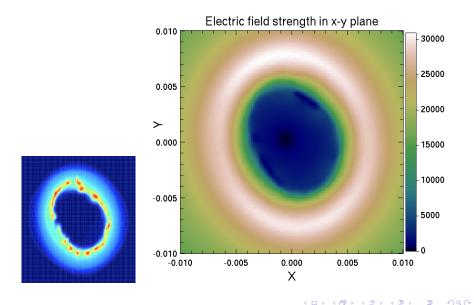
Hollow beam collimation


Profile reproducibility

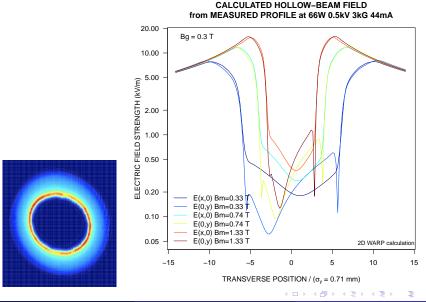

G. Stancari (Fermilab)

LARP CM14 : 26-28 Apr 2010 21 / 34

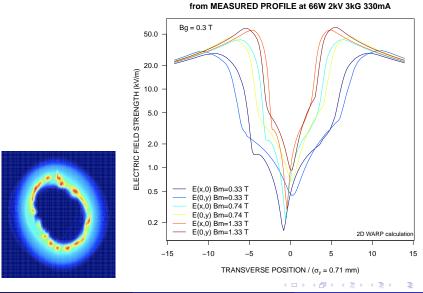
Profiles vs temperature



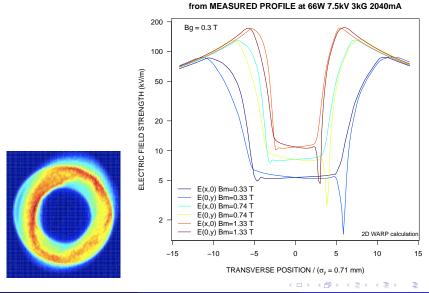
Warp calculation of 2D fields from measured profiles



(thanks to D. Grote, J.-L. Vay, M. Venturini (LBNL) for kind support)


Electric field at 2 kV, 330 mA

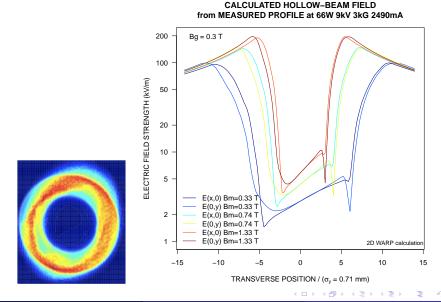
Electric fields at 0.5 kV, 44 mA



Electric fields at 2 kV, 330 mA

CALCULATED HOLLOW-BEAM FIELD

Electric fields at 7.5 kV, 2040 mA

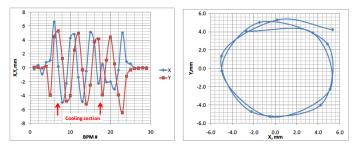

CALCULATED HOLLOW-BEAM FIELD

G. Stancari (Fermilab)

Hollow beam collimation

LARP CM14 : 26-28 Apr 2010 27 / 34

Electric fields at 9 kV, 2490 mA


G. Stancari (Fermilab)

LARP CM14 : 26-28 Apr 2010 28 / 34

Helical-beam studies in Recycler Ring

A. Shemyakin and A. Valishev, Beams-doc-3554-v1 (19 Feb 2010)

- Can a helical electron beam approximate the effect of a hollow beam?
- Need integer number of turns, short pitch compared to amplitude functions
- Preliminary study with 8-GeV protons in electron cooler
- Helical electron trajectory generated by upstream correctors

• Indications of scraping: core has longer lifetime than halo

• Very short lifetimes (not understood), work in progress

Experimental goals

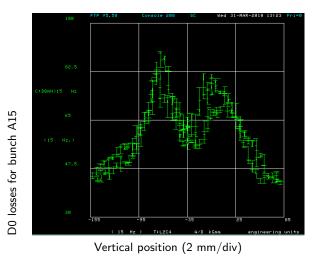

- verify hollow-beam alignment procedures
- evaluate effect on core lifetime
- measure losses at collimators, absorbers and detectors vs HEBC parameters: position, angle, intensity, pulse timing, excitation pattern
- assess improvement of loss spikes
- Prefer 980 GeV over injection: stable orbits and emittances, collimation system in normal operating conditions (but effect is smaller)
- Take advantage of important TEL2 improvements:
 - Stacked-transformer modulator (faster, complex waveforms)
 - BPM system readout

Image: A matrix and a matrix

Procedure for aligning present TEL2 Gaussian gun:

- Align electrons with (anti)protons according to TEL2 BPMs
- Scan horizontally and vertically
- With nominal tunes, no increase in losses
- By moving lattice tunes closer to resonance, losses depend on position/angle, consistent with Gaussian lens tune shift and nonlinearity

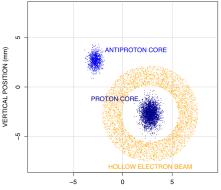
Vertical scan of Gaussian beam on antiprotons

Center of loss curve coincides with BPM alignment to within 0.1 mm

Example of HEBC at TEL2 location in Tevatron

- Lattice:
 - $\beta_x = 66$ m, $\beta_y = 160$ m
 - $D_x = 1.18 \text{ m}, D_y = -1.0 \text{ m}$

Protons:


- $\epsilon = 20 \ \mu m$ (95%, normalized)
- $\Delta p/p = 1.2 \times 10^{-4}$
- $x_{\rm co} = +2.77$ mm, $y_{\rm co} = -2.69$ mm
- $\sigma_x = 0.46 \text{ mm}, \sigma_y = 0.71 \text{ mm}$

• Antiprotons:

- $\epsilon = 10 \ \mu m$ (95%, normalized)
- $\Delta p/p = 1 \times 10^{-4}$
- $x_{\rm co} = -2.77$ mm, $y_{\rm co} = +2.69$ mm
- $\sigma_x = 0.32 \text{ mm}, \sigma_y = 0.50 \text{ mm}$

• Electrons:

- I = 2.5 A
- B_g = 0.3 T, B_m = 0.74 T
- $r_1 = 4.5 \text{ mm}, r_2 = 7.62 \text{ mm}$ at gun
- $r_{\min} = 2.9 \text{ mm} = 4\sigma_y^p$, $r_{\max} = 4.9 \text{ mm}$ in main solenoid

HORIZONTAL POSITION (mm)

Next steps

- Modeling:
 - performance vs lattice parameters
 - effect of misalignments, field-line ripple, bends
 - 3D kick maps with bends and profile evolution
- Test bench:
 - time stability of current density within each pulse
 - scaling of hollow beam profiles with I, V, B
 - design and test 25-mm cathode (\sim 7 A) with smoother profile
- Recycler Ring:
 - Continue measurements with helical beam in electron cooler?
- Tevatron:
 - Gaussian gun currently installed in TEL2
 - study of nonlinear head-on beam-beam compensation: bunch-by-bunch lifetimes, tunes, tune spreads
 - install 15-mm hollow gun in TEL2 (July shutdown)
 - start parasitical and dedicated studies on collimation

Thank you for your attention