LHC CRAB CAVITIES

RAMA CALAGA LARP CM14, April 26-28, 2010

- Post LHC-CC09 & Chamonix
- R&D Activities
- SPS, a first validation step ?

Ack: R. De-Maria, R. Assmann, E. Metral, J.P. Koutchouk, Y. Sun, R. Tomas, J. Tuckmantel,, F. Zimmermann (CERN), N. Solyak, V. Yakovlev (FNAL), Y. Funakoshi, N. Kota, Y. Morita (KEK), G. Burt, B. Hall (LU), P.A. McIntosh (DL/ASTeC), Z. Li, L. Xiao (SLAC)

Ack: LHC-CC Team

DIFFERENT UPGRADE BENEFITS

INTERPRETING ZIMMERMANN

Upgrade scenarios aim at x3-10 Lumi increase

Bunch Intensity: $1.1 \times 10^{11} \rightarrow 1.7$ - 2.3×10^{11}

Compensate Piwinski Angle (β^* 55cm \rightarrow 25cm or smaller)

Reduce Emittance: 3.5mm $\rightarrow 1$ mm (new injector chain)

Bunch intensity increase more beneficial

BUT, very difficult to digest in injectors & the LHC

Additional machine protection and collimation issues

NEW ROADMAP, LHC-CC09/CHAMONIX

- CERN must pursue crab crossing following KEK-B success
- Both local (baseline) & global should pursued
- High reliability (cavity, machine protection, impedance & mitigation)
- No validation in LHC required (ex: SPS as test bed with KEK-B cavities)
- Coordination & timing: both short term & long term upgrades of LHC

POSSIBLE SCHEMES Compact Cavities: Local (IR1/IR5) Elliptical Cavities: Only Global (IR4)

CERN STRATEGY (PRELIM)

Goal: Obtain significant luminosity increase via crabs (circa 2018) Assumption: $\beta^* \leq 25$ cm, machine protection validated

- <u>Baseline</u>: Develop compact cavities consistent with local option
 - 194 mm beam-to-beam separation, 400 MHz

- Alternative (background activity): Elliptical cavities for IR4 global scheme
 - 420 mm beam-to-beam separation, 800 MHz

All cavities (including KEK-B) can be potentially tested in SPS for validation

CAVITIES WITH COMPACT FOOTPRINT

2008-2010

Compact cavities aiming at small footprint & <u>400 MHz</u>, 5 MV/cavity

PERFORMANCE CHART, CCC

Kick Voltage: 5 MV, 400 MHz

		HWDR (J. Delayen)	HWSR (Z. Li)	4-Rod (G. Burt)	Rotated Pillbox (N. Kota)	
Geometrica	Cavity Radius [mm]	200	140	140	150	
	Cavity Height [mm]	382	194	230	668	
RF	Beam Pipe [mm]	50	45	45	75	
	Peak E-Field	29	65	62	85	
	Peak B-Field	94	135	113	328	
	R _T /Q	319	275	800	-	

To be discussed in crab session

[†]Exact voltage depends on cavity placement & optics

 $^{\dagger}\text{Cavity}$ parameters are evolving

EXAMPLE: COMP CAV R&D (LARP-AES)

- Detailed multipacting analysis of cavity & couplers LARP
- Cavity engineering (mechanical & thermal analysis) AES

Post RF-Design

- Cavity fabrication, stiffening (?), Helium-vessel
- Surface treatment (BCP, EP ?) & assembly
- Optical inspection & thermal mapping
- Cavity testing (2K/4K), instrumentation & field validation
- Cryomodule (generic or specific)
 - Vertical couplers & access points
 - Tuning system (compression or bellows)
- RF power and controls
- Horizontal RF testing & CERN test stand (SM18) \rightarrow SPS Tests

To be discussed in crab session

Approximate Schedule

LHC-CC10-14

¥

Crab Cryomo	dule	Progress											
April 26 2010													
Task	Sub-Task	POC	Request	20	10	20	11	20	12	20	13	20	014
				1 st	2 nd								
Cavity													
	Cavity Design												
	Couplers & HOM Damping							H(^ Shi	Itdo	wn		
	Multipacting & Mitigation												
	Mechanical/Thermal Analysis			1									
	Instrumentation												
	Copper Models & Testing												
	Niobium Fabrication												
	Coupler Fabrication												
	Surface Treatment												
	Low/High Power Testing												
	Assembly & Testing												
Cryostat													
	LHC Tunnel Constraints												
	Conceptual Design, Nominal					1.1							
	Technical Design & Analysis							1					
	Procurement, Fabrication												
	Assembly & Test Stand			1									
Cryogenics													
	Test Stand Preparation												
	4K (2K) Circuits												
	Interface with SPS/LHC Ovo												
	Safety Valves, Interlocks												
	CERN Test Stand												
RF Controls													
	l ow level BF												
	RF Controls & Testing												
	Integration with LHC controls												
Infrastructure													
	Tunnel Lavout					1							
	Power Amplifiers												
	Transmission Lines												
	Cryogenics												
	Survey and Alignment												
	Cryomodule Installation												
	Radiation Issues												
	RF Powering & Beam Tests												

SIMULATIONS, PAST & PRESENT

Machine protection (LARP, CERN)

Approx 200 interlock systems Best/worst case scenario: Detection - $40\mu s$ ($\frac{1}{2}$ turn), response - 3 turns Specifications of crab cavity RF & feedback to ensure safe operation

Collimation efficiency & hierarchy (CERN) Additional 0.5σ aperture, suppression of synchro-betatron resonances Hierarchy preserved (primary, secondary, tertiary)

Crab cavity induced noise, Beam-Beam (KEK-B, LARP) Modulated noise (measured, 30 Hz - 32 kHz) BB simulations: Weak-strong $\leq 0.1\sigma$, Strong-strong BB $\leq 0.02\sigma$.(τ)

Additional machine impedance (LARP, CERN)

 $\begin{array}{l} \mbox{Longitudinal: \sim60 k\Omega nominal, \sim20 k\Omega upgrade} \\ \mbox{Transverse: \sim2.5 M\Omega/m nominal, \sim0.8 M\Omega/m upgrade (Norm - $\beta/{\beta})$ \\ \mbox{Damping: Q_{ext} \sim 10^2 - 10^3 (depending on R/Q)} \end{array}$

RF TRIP & BEAM ABORT (KEK-B)

Trip \rightarrow Beam Abort in LHC time \sim 3 Turns

CRAB FAILURE, VOLTAGE

Strong effect close to $\sigma\text{-mode}$

OP SCENARIOS

- Commissioning (Cryomodule Validation)
 - Installation, cryogenics, RF commissioning, low intensity tests
- Injection/Ramp (Orbit control)
 - Cavity detuned (~5 kHz) & damped
 - "Zero voltage", injection optics
- Top energy (Crabbing & leveling)
 - Cavity re-tuning & adiabatic voltage ramping (9-90 ms)
 - Crab- β un-squeeze/squeeze
 - Anti-crab \rightarrow fully crabbed for maximum lumi-gain

(r max 0)	3 TeV		7 TeV			
{ ⊏ , β _{crab} }		5 IeV	Peak Lumi	Int Lumi/yr		
$\beta^{\star}=25~\text{cm}$			63%	22%		
$\beta^{\star} = 30 \text{ cm}$	ε↓,	N_{b}^{\uparrow}	40%	19%		
$\beta^* = 55 \text{ cm}$	1		10%	-		

Freq: 400 MHz, Volt: <10 MV, β_{cc} : ~5 km

Integrated luminosities:

 $\mathsf{N}_{_{b}}=1.7\times10^{11}$, $\beta*=0.25~\text{cm}$

Burn off, IBS, rest gas scattering

Run time = 10 hrs, TAT = 5 hrs

Int Luminosities: G. Sterbini

SPS TESTS, WG

No real showstoppers were identified.

Earliest availability, Dec 2010, estimate SPS test date Dec 2012 - May 2013

The best location in SPS is at COLDEX.41737 (4020 m, LSS4)

Collimation with integrated instrumentation

1st (SLAC) collimator sees no effect & full crab effect at 2nd second (CERN) collimator

Integration

Removal of COLDEX \sim 2-3 weeks, cryogenics refurbish \sim 200kCHF RF Power: IOTs (1-2), 400 kCHF & space requirements After 2 MHz tuning at KEK-B, re-assembly and test at SM18?

SPS beam tests, 2010 to check lifetime @55GeV coast with $2\mu m$ norm emittance

Machine protection

Primary goal is beam measurement (No implementation of interlocks, BPMs-fast & RF-slow) Failure scenarios (for example: measure evolution of RF phase and effect on the beam)

Crab Bypass

Similar to COLDEX to move it out of the way during high intensity operation Technical details (RF connections, cryogenics, size, weight etc...) needs to be sorted out

Coldex Location

KEK-B CAVITIES

RF & beam commissioning with low currents: 2-3 weeks High current operation: 4-5 months World record luminosity: ~2 yrs (aperture & chromatic coupling)

Courtesy KEK-B

KEK-B CRYOSTAT

Crab voltage: {HER, LER} - 1.6 MV, 1.5 MV (design: 1.44 MV) Operational voltage: {HER, LER} - 1.4 MV, 0.9 MV Trip rate: Average 1/day (HER), 0 for LER (from up to 25) 5 m

PROS/CONS OF DIFF CAVITIES, SPS TESTS

	800 MHz LHC Cavity	509 MHz KEK-B Cavity		
Frequency	-	2 MHz static tuning		
Voltage	2.5 MV	1.5 MV		
Temperature	2K	4K		
Qext	1×10 ⁶	2×10 ⁵		
Helium Volume	~50-100 L	400L		
Heat Load	-	S :10 W, D: 50 W		
Cavity Tuner		1 kHz/s (200 kHz max)		
Module Weight	_	5 Tons		
Module Length	~2 m	5 m		
Cavity Height	< 1 m	1.5 m		

Table is only preliminary

SPS TEST OBJECTIVES, PROTONS

Safe beam operation (low intensity) & reliability

Tests, measurements (orbits, tunes emittances, optics, noise)

Voltage ramping & adiabaticity

Collimation, scrapers to reduction of physical aperture with & w/o crabs

DA measurements (possible ?)

Intensity dependent measurements (emittance blow-up, impedance) Coherent tune shift and impedance Instabilities Beam-beam effects (BBLR – tune scan, current scan) Other non-linearities (octupoles)

Operational scenarios

Accumulation of beam with crab-on & crab off

Beam loading with & w/o RF feedback & orbit control

RF trips and effects on the beam

Energy dependent effects

Long term effects with crab-on, coasting 120 GeV

Orbits in SPS

The intra-bunch orbit deviation in the limit of SPS BPMs ($\pm 1.5 - 3$ mm)

Head-tail monitor can detect sub-millimeter variations

Possible Next Step

R. Gupta, BNL & Crab Team

CONCLUSIONS

- Post Chamonix reaction
 - Most positive, LARP contribution via cryomodule/beam studies vital
 - Actual fabrication funds external (starting point SBIR/STTR)
- Future Strategy in view of LHC commissioning
 - Aggressive R&D on compacts to immediately solve any issues
 - Fall back solution to elliptical is well advanced
- SPS tests
 - Validate differences between protons & electrons
 - KEK-B or LHC cavity (2012-13) in SPS for beam testing
- Safety
 - Machine protection needs detailed study to evaluate failure modes
 - Appropriate feedback to guarantee MP at ultimate intensities

LARP ACTIVITIES, 2010-11

BNL – R. Calaga

Machine protection studies (with CERN)

Establish SPS tests requirements and goals

Coordinate LARP-SBIR compact cavity development

SLAC. LBNL – Z. Li, J. Qiang

RF optimization of HWSR compact \rightarrow SBIR Detailed geometry of power coupler and HOM damping (with FNAL) Multipacting, tolerance studies, LHC beam-beam studies

FNAL – V. Yakovlev

Multipacting and mechanical studies of HWSR Cryomodule concept development for baseline compact cavity

Jlab – J. Delayan

HWDR cavity development and demonstration (STTR funds)