

HQ Progress and Plan

Helene Felice

LARP Collaboration Meeting 14
April 26-28 2010
FNAL

OUTLINE

- Coil Fabrication status and plan
 - Coil fabrication summary
 - Instrumentation
- HQ01a Magnet
 - Characteristics
 - Assembly
 - Cool-down
- 1 meter tests schedule
- 2 meter extension

Coil Fabrication Status

Coil#	Cable number	Strand type	Gap during winding and curing	L1/L2 pinning	Reaction Potting	Status
1	992R	54/61	N	Υ	LBL	HQ01a
2	992R	54/61	N	Υ	BNL	HQ01a
3	991R	108/127	Υ	Υ	LBL	HQ01a
4	1000R	108/127	Υ	Υ	BNL	HQ01a
5	1000R	108/127	Υ	N	BNL	instrumented
6	1000R	108/127	Υ	Υ	BNL	potted
7	1000R	108/127	Υ	Υ	LBL	reacted
8	996R	54/61	Υ	Υ	BNL	wound and shipped
9	996R	54/61			BNL	winding prep
10	996R	54/61			LBL	
11		108/127 Ti dopped			LBL	
12	ţ	54/61 Ta dopped 1 pass			LBL	

FY10 coil fabrication schedule

Coil 7	Mon 2/1/10	Thu 6/24/10	104 days?
Coil 7 Wind/Cure	Mon 2/1/10	Mon 2/15/10	11 days?
Coil 7 React / Impreg LBL	Tue 2/16/10	Mon 6/7/10	80 days?
Coil 7 Instrum - Elec	Tue 6/8/10	Thu 6/24/10	13 days?
Coil 8	Mon 3/29/10	Wed 8/25/10	108 days?
Coil 8 Wind/Cure	Mon 3/29/10	Thu 4/15/10	14 days?
Coil 8 Shipping to BNL	Fri 4/16/10	Fri 4/23/10	6 days?
Coil 8 React / Impreg /Instrum BNL	Mon 4/26/10	Fri 7/9/10	55 days
Coil 8 shipping to LBL	Mon 7/12/10	Fri 7/16/10	5 days
Coil 8 Instrum - Elec	Mon 8/9/10	Wed 8/25/10	13 days
Coil 9	Mon 4/19/10	Thu 10/21/10	134 days?
Coil 9 Wind/Cure	Mon 4/19/10	Fri 5/7/10	15 days?
Coil 9 Shipping to BNL	Mon 5/10/10	Mon 5/17/10	6 days?
Coil 9 React / Impreg / Instrum BNL	Mon 7/12/10	Fri 9/24/10	55 days?
Coil 9 Shipping to LBL	Mon 9/27/10	Mon 10/4/10	6 days
Coil 9 Instrum - Elec	Tue 10/5/10	Thu 10/21/10	13 days?
Coil 10	Tue 6/15/10	Thu 9/16/10	68 days?
Coil 10 Wind/Cure	Tue 6/15/10	Mon 7/5/10	15 days?
Coil 10 React / Impreg LBL	Tue 7/6/10	Thu 8/26/10	38 days?
Coil 10 Instrum - Elec	Fri 8/27/10	Thu 9/16/10	15 days?
Coil 11	Fri 8/27/10	Tue 11/30/10	68 days?
Coil 11 Wind / Cure	Fri 8/27/10	Thu 9/16/10	15 days
Coil 11 React / Impreg LBL	Fri 9/17/10	Tue 11/9/10	38 days?
Coil 11 Instrum - Elec	Wed 11/10/10	Tue 11/30/10	15 days?
Coil 12	Fri 9/24/10	Tue 12/28/10	68 days?
Coil 12 Wind / Cure	Fri 9/24/10	Thu 10/14/10	15 days?
Coil 12 React / Impreg LBL	Fri 10/15/10	Tue 12/7/10	38 days?
Coil 12 Instrum - Elec	Wed 12/8/10	Tue 12/28/10	15 days?

HQ01a Magnet parameters

HQ01a:

 \Rightarrow Coils 1 and 2: 54/61 strand

 \Rightarrow Coils 3 and 4: 108/127 strand

 \Rightarrow should be the limiting coils

1 1 K

⇒ short sample current computed based on 108/127 witness samples

	4.4 K	1.9 K	
Short sample current Iss (kA) (54/61)	17.3 (17.7)	19 (19.5)	
Gradient at Iss (T/m) (54/61)	195 (199)	214 (218)	
Stored energy (MJ)	0.9 1.1		
Inductance (mH)	6		

1 0 K

HQ01 Short sample estimate

Instrumentation

Instrumentation per coil:

• 20 Vtaps: 10 IL and 10 OL

ullet 1 SG station measuring ullet and Z components located in the center: full bridge T

compensated

• 1 spot heater

• 4 strips of protection heaters

Vtaps circuits + protection heaters circuits => trace SG + spot heaters => wired externally

Protection

Protection heaters design:

Coverage = 60 %

4 strips connected in parallel

PH circuits based on hipot:

Coil 1 A02: failed 300 K magnet hipot

Coil 1 B01 B02: passed hipot despite short to endshoe

HQ01a Strain gauge station location

Assembly with Al dummy coils

with Fuji paper

Assembly of HQ01a

- coil pack with Fuji
- azimuthal loading up to half of coil target
- axial loading
- azimuthal loading completion

- θ and Z
- 1 SG station per coil
 - θ and Z

Dummy Assembly – Coil pack

Collar-pack assembly

	Inches
Dummy coil OD	7.198
G10 nominal shim	0.037
Medium P Fuji	0.004
Shimmed Dummy OD	7.280
Collar ID	7.276

2 mils radial interference between dummy and shimmed collar

- => ~ 1.5 mils per side of the key
- => ~ 1 mils average measured after torque

Coil-pack assembly

Insertion in the vertical yoke-shell subassembly

Dummy Assembly

HQ01a – Fuji test I – 3 laminations

Layout	
Coil theoretical OD	7.198"
G10 nom. / Shim stack	0.037" / 0.034"
Mylar shim / Low P Fuji	0.004" / 0.007"
Nom. Shimmed coil OD	7.280"
Collar ID	7.276"

- 41 mils of total shimming
 - => 2 mils of radial interference coil/collar
- •Pressure pattern similar to LQS01a in the straight section
- In the end: contact at the mid-plane because end part at nominal size

20.5" from RE

2.5" from RE

HQ01a - Fuji test II - Nominal shim - Full length

Layout	
Coil theoretical OD	7.198"
G10 nom. Shim / Shim stack	0.037" / 0.029"
No addition. Shim / Low P Fuji paper	0.008"
Nominal Shimmed coil OD	7.272
Collar ID	7.276

Nominally: no interference between coil and shimmed collar

RE

No key in the end + endshoe => No clearance

Center

=> 8 mils clearance measured between key and collar per side

- Coil pack oversize in the center : agreement with coil measurements
- Decision to go ahead with nominal shim 37 mils

ANSYS 2D – Bladder operation Targets (I)

- Coil pack is oversized in the center
- gap key / collar gap of ~ 8 mils => behavior "no key"
- Decision to pre-stress to 1.9 K short sample: 19.05 kA

Same shim stack needed: 24 mils

- Similar shell strain
 - same stretching of the shell in both cases
- Much higher pole strain in "no key" case

ANSYS 2D – Bladder operation Targets (II)

Coil/Pole contact elements at Iss 1.9 K with key

Displacement scaling 100

Coil/Pole contact elements at Iss 1.9 K without key

Displacement scaling 100

SG data during bladder operation

Coil gauges responding to the bladder pressure and to the shimming of the load keys

HQ01a SG data during assembly

- Some shimming needed to straighten the coil?
- The slope => no contact with the key

ANSYS

Without key

MPa

72 mils | Pole: -874 με Shell: 1465 με

Comparison with Dummy => coil pack 3 mils bigger on the radius than dummy coil / nominal pack

		L1	L2	L1	L2	
	Warm avg preload on the coil	-61	-37	-91	54	
	Peak stress in the coil	-!	92	-1	50	
1	Pole SG location	-!	97	-1	57	-114 ± 9
	Shell SG location	g	96	8	9	115 ± 7.6

ANSYS

With key

MPa

SG measur.

(MPa)

HQ01a Cool-down SG data

- Only 60 to 75 % of the coil target
- 90 % of the shell target

$$\sigma_{\theta \text{ pole SG}}$$
 ~ -150 MPa ± 8

- \Rightarrow $\sigma_{\theta \text{ layer 1}}$ ~ -110 Mpa
- \Rightarrow Pre-stress required for 17.3 kA

SG data during cool down

1300

Fri Apr 23 17:39:40 2010

04-19 12:00:00

04-22 12:00:00

04-23 12:00:00

04-21 12:00:00

Time

04-20 12:00:00

Axial Loading

Target piston: $1260 \mu\epsilon / 90 \text{ Mpa}$

Average measured: 1211 με / 85 MPa

Target cold: $2280 \mu\epsilon / 180 \text{ Mpa}$

Average measured: 2483 με /190 Mpa

Total axial force applied ~ 600 kN

HQ01 Testing Plans / Next steps

Test #1: HQ01a test at LBNL

Coils 1, 2, 3 and 4

- Ongoing until mid-May
- Based on performance
 - Disassembly of HQ01a
 - Replacement of some coils: 5 and 6 should be available by then
 - Adjustments of the mechanical structure
 - Re-assembly as HQ01b

Test #2 CERN in summer 2010

Coils 5 and 6 available

- Motivation to test at CERN: 1.9 K
 - Current leads limitation at FNAL
- Discussion with CERN about HQ compatibility with test facility
 - Cryostat size
 - Magnet stored energy (?)

Test#3 at FNAL in Fall 2010

Coils 7,8 and 10 available Possibly 9

HQ Next steps – 2-meter extension

<u>Goal</u>: comparison with the NbTi models on <u>all</u> issues that may be relevant to a technology decision in 2013-2014

Several changes may be required:

- Coil design
 - Cross-section iteration for field quality
 - End optimization
 - Cooling channels in the pole
- Coil fabrication and tooling
 - Correction to oversized coils
 - Protection heaters design

HQ 2-meter extension

Structure

- Segmented aluminum shell
 - Required to minimize variation of azimuthal stress along the magnet length
- LQ-like modular assembly
 - In preparation for further length extension
- Collar design
- Pad and yoke design optimization
 - Include Phase-type I cooling areas and features
- Compatibility with external SS cylinder for LHe containment
- Fiducials external cylinder to yoke
- Axial support
 - End plate and axial rods
 - End plate welded to SS cylinder

HQ 2-meter extension

- Implementation
 - Coil fabrication:
 - Use existing 1 meter parts when possible:
 - Winding mandrel
 - ➤ Reaction / Impregnation tooling
 - Structure
 - Extension of the existing shell? Yoke? Pads?
- Capability to continue making 1 meter models?
- Schedule/cost

ANSYS 2D – Cool down Targets

Pole: -1396 $\mu\epsilon$ Shell: 2670 $\mu\epsilon$

Pole: -1800 με

Shell: 2564 με

With key – $\sigma\theta$ at 4.2 K	L1	L2	
Avg preload on the coil	-143 -96		
Peak stress in the coil	-193		
Pole SG location	-181		
Shell SG location	211		

Without key $-\sigma\theta$ at 4.2 K	L1	L2
Avg preload on the coil	-169 -112	
Peak stress in the coil	-227	
Pole SG location	-2	.34
Shell SG location	2	02