LQS01 Mechanical Analysis and LQS01b Assembly

P. Ferracin

LARP Collaboration Meeting, CM14 Fermilab April 26-28, 2010

LQS01 magnet design

- Iron pads, masters and yokes
- 20 mm thick Al shell (500 mm OD)
- Pre-load with bladders and keys
- End support: plate and rods
- Assembly of short segments
- Connection of segments
- Coil length: 3.4 m
- Magnet length: 3.7

2

Strain gauge locations

- Station
 - y and z gauges thermally compensated
- 10 shell stations
- 4 stations per coil
- 2 gauges per rod
- Total of 60 gauges

Rod4	Rod1
	a
Rod3	Rod2

CM13 Loading of LQS01 completed

- Structure pre-loaded for a 230-240 T/m gradient
- Shell
 - Computed: +34 MPa
 - Measured: +33 ±8 MPa
- Rod
 - Computed: +63 MPa
 - Measured: +60 ±3 MPa

CM13 Loading of LQS01 completed

- Coil σ_9 to -12 ±11 MPa
 - Lower than comp. -49 MPa
 - Not observed in LQSD
 - Possibly related to coil dimens.
- Pre-loading strategy
 - Shell tension chosen as reference
 - Conservative approach for 1st test

Paolo Ferracin

Outline

- LQS01 mech. behavior during cool-down and test
- Analysis with finite element model
- Post-test inspections: pressure sensitive film test

• LQS01b loading and expected coil stress

LQS01 mechanical behavior during cool-down

- Shell
 - Computed: +155 MPa
 - Measured: +146 ±6 MPa

- Rod
 - Computed: +213 MPa
 - Measured: +197 ±11 MPa

Paolo Ferracin

LQS01 mechanical behavior during cool-down

- Coil
 - Computed
 - From -49 MPa at 293 K
 - To -122 MPa at 4.5 K
 - Measured
 - From +5 ±12 MPa at 293 K
 - To -25 ±19 MPa at 4.5 K

LQS01 mechanical behavior during excitation

- Plateau (separation) observed in most of the y gauges
 - High tension (>50 MPa) measured at maximum field
 - Average pre-load after cool-down: 70-80 MPa?
 - Missing pre-load: 30-40 MPa?
- Training between 70% and 80% of I_{ss}

LQS01 mechanical behavior during excitation

Analysis with finite element model

Nominal coil and oversized coil (+120 μm on the mid-plane)
 – Displacement scaling: 50

Analysis with finite element model Room temperature pre-load

- Shell azimuthal strain

 Similar increase with shim thickness
- Coil azimuthal strain
 - Oversized coil with initial plateau followed by same slope as nominal

Analysis with finite element model Assembly, cool-down, excitation

- Shell azimuthal stress

 Similar variations during cool-down and excitation
- Coil azimuthal strain
 - Oversized coil with lower compression at 4.5 K

Analysis with finite element model Room temperature pre-load

After LQS01 pre-load

- Coil vs. shell strain consistent with oversized behavior

Pressure sensitive film test LQS01 conditions

- G10 coil-pad shim
 - 30 mils (0.765 mm) thickness

Pressure sensitive film test LQS01b vs LQS01 conditions

- G10 coil-pad shim
 - From 30 mils (0.765 mm)
 to 15 mils (0.380 mm)
 thickness

LQS01b loading

 Choice of pre-load increase based on LQS01 measured variations during cool-down

• Shell

- From (LQS01) +34 \pm 8 MPa
- To (LQS01b) +67 ±6 MPa
- Rods
 - From (LQS01) +76 ±7 MPa
 - To (LQS01b) +94 ±5 MPa

LQS01b loading Meas. vs. analysis with finite element model

• Coil strain consistent with nominal coil model

LQS01b loading Coil azimuthal strain/stress

- LQS01a
 - No compression measured on the pole gauges at the end of loading
 - Ave. stress: +5 \pm 12 MPa
- LQS01b
 - All the coil gauges indicate compression at the end of the loading

– Ave. stress : -107 \pm 26 MPa

Expected LQS01b pre-load after cool-down (Variations based on sensitivity analysis)

- Shell azimuthal stress
 +180 MPa
- Ti pole azimuthal stress
 - -160 ±30 MPa

- Same pole stress as TQ\$03b
 - No pole turn separation
 - 91% lss

Expected LQS01b pre-load after cool-down (Variations based on sensitivity analysis)

- Coil peak stress
 - Layer 1: -193 \pm 30 MPa
 - Layer 2: -186 \pm 30 MPa

- Less than TQS03c (88% I_{ss})
 - Layer 1: -240 MPa
 - Layer 2: -260 MPa

Conclusions

- LQS01 mech. behavior at 4.5 K similar to 293 K conditions
 Low pre-load in coil inner layer
- Pole strain plateau, indicating separation, observed during test
 Magnet trained between 70% and 80% of I_{ss}
- Mismatch between coil OD and pad ID pointed out by finite element models and pressure sensitive films
- Target coil pre-load achieved in LQS01b with optimized pad ID
 - Average and peak stresses similar to TQS03b-c tests
 - Spread consistent with sensitivity analysis

Appendix

Analysis with finite element model Nominal coil

Analysis with finite element model Oversized coil

LQS01a shell azimuthal strain – stress (Computed target: pre-load for 230 T/m)

- 293 K before loading:
- 293 K before cool-down
- 4.3 K before test
- 4.3 K after test
- 293 K after warm-up:
- 293 K after unloading:

 $+159 \pm 146 \mu\epsilon$ $+10 \pm 9$ MPa $+459 \pm 114 \mu\epsilon$ $+34 \pm 8$ MPa $+1630 \pm 117 \mu\epsilon$ $+146 \pm 6$ MPa $+1589 \pm 119 \mu\epsilon$ $+142 \pm 7$ MPa $+338 \pm 93 \mu\epsilon$ $+24 \pm 6$ Mpa $+194 \pm 143 \mu\epsilon$ $+13 \pm 9$ MPa

LQS01a pole azimuthal strain – stress (Computed target: pre-load for 230 T/m)

- 293 K before loading:
- 293 K before cool-down:
- 4.3 K before test
- 4.3 K after test
- 293 K after warm-up
- 293 K after unloading:

+14 ±4 MPa +5 ±12 MPa -25 ±19 MPa -13 ±21 MPa +1 ±12 MPa +0 ±7 MPa

LQS01a rod axial strain – stress (Computed target: pre-load for 230 T/m)

- 293 K before loading:
- 293 K before cool-down
- 4.3 K before test
- 4.3 K after test
- 293 K after warm-up:
- 293 K after unloading:

+0 ±0 MPa +76 ±7 MPa +197 ±11 MPa +197 ±11 MPa +60 ±7 MPa +0 ±0 MPa

Paolo Ferracin

28

RodD

Coil-pack dimensions LQS01a vs. LQS01b

From LE	2″	33"	66"	99"	132″	Av. end	Av. center		
LQSD before cool-down (torque: 100 inch*pound)									
Width							6.543"		
Height							6.545"		
LQS01a before test (torque: 100 inch*pound)									
Width	6.549"	6.583"	6.584"	6.582″	6.566"	6.558"	6.583"		
Height	6.552"	6.574"	6.564"	6.569"	6.543"	6.548"	6.569"		
LQS01a after test (torque: 35 inch*pound)									
Width	6.560"	6.579"	6.581"	6.582"	6.560"	6.560"	6.581"		
Height	6.549"	6.587"	6.586"	6.581"	6.556"	6.553"	6.585"		
LQS01b before test (torque: 100 inch*pound)									
Width	6.512"	6.530"	6.531"	6.533"	6.516"	6.514"	6.531"		
Height	6.510"	6.541	6.533"	6.536"	6.514"	6.512"	6.537"		

Coil-pack dimensions LQS01a vs. LQS01b

- After bladder operation
 - LQSD
 - Shell azimuthal microstrain: 535
 - Load shim stack: 0.070"
 - 0.069" for 460 microstrain
 - LQS01
 - Shell azimuthal microstrain: 460
 - Load shim stack: 0.050"
 - LQS01 coil-pack width at full load 0.040" bigger than LQSD
- After LQS01a test
 - After removal of top-pad
 - Some misalignment between adjacent coils towards the ends
 - 3 mil (filler gauges) between mid-planes in the central region

Shell strain vs. shim thickness

Coil strain vs. shim thickness

Coil-pack assembly Pad bolting

- LQS01 pole gauges
 - Tension after bolting
 - Bending

- LQS01b pole gauges
 - Minimum strain
 (bending) after bolting

Sensitivity analysis

- Variation of coil mid-plane:
 - ± 2 mils (±50 $\mu m)$
 - The variation is simulated by shifting vertically the coil mid-plane by $\pm 50~\mu m$
- Variation of shell inner radius :
 - ± 2.5 mils ($\pm 65 \ \mu$ m)
 - The variation is simulated by changing the shim of the interference key by $\pm 65 \mu m$

Computed sensitivity

Coil mid-plane	Shell	Pole σ _y at 293 K	Pole σ _y at 4.3 K	Coil σ _{y_peak} at 293 K	Coil σ _{y_peak} at 4.3 K	Shell σ _y at 293 K	Shell σ _y at 4.3 K
		MPa	MPa	MPa	MPa	MPa	MPa
LQS01 target	LQS01 target	-51	-128	-48/-36	-164/-162	+32	+151
LQS01b target	LQS01b target	-87	-163	-82/-61	-193/-186	+54	+180
+50 μm	Nominal	-92	-50	-90/-76	-189/-205	+65	+196
-50 μm	Nominal	-96	-176	-86/-58	-197/-169	+41	+164
Nominal	+65 μm	-106	-182	-100/-74	-209/-200	+66	+195
Nominal	-65 μm	-68	-144	-64/-47	-167/-173	+42	+164
-50 μm	+65 μm	-116	-193	-105/-68	- <mark>212</mark> /-182	+53	+179
+50 μm	-65 μm	-84	-131	-80/-68	-173/-191	+52	+180
+50 μm	+65 μm	-107	-169	-104/-85	-205/-218	+77	+211
-50 μm	-65 μm	-75	-156	-68/-48	-181/-155	+29	+148

