

LHC Beam-Beam and Crab Simulations

Ji Qiang

Lawrence Berkeley National Laboratory

Larp CM14 Collaboration Meeting, Apr. 26-28, 2010, Fermilab

LAWRENCE BERKELEY NATIONAL LABORATORY

Outline

- Introduction
- Computational and Physics Models
- Strong-strong beam-beam tune scan with crab cavity compensation at LHC
- Effects of crab cavity jitters
- Summary and future work
- Appendix:
 - Offset beam-beam collision

BeamBeam3D:

Parallel Strong-Strong / Strong-Weak Simulation

- Beam-Beam forces integrated, shifted Green function method with FFT – O(N log(N)) computational cost
- Multiple-slice model for finite bunch length effects
- Parallel particle-based decomposition to achieve perfect load balance
- Lorentz boost to handle crossing angle collisions
- Arbitrary closed-orbit separation (static or time-dep)
- Multiple bunches, multiple collision points
- Linear transfer matrix + one turn chromaticity+thin lens sextupole kicks
- Conducting wire, crab cavity, and electron lens compensation

Head-on Beam-Beam Collision with Crossing Angle lui) BERKELEY Moving frame: $c cos(\phi)$ 2 **(** IP Lab frame

$$x^* = x(1 + h_x^* \cos(\psi)\sin(\alpha)) + yh_x^* \sin(\psi)\sin(\alpha) + z\cos(\psi)\tan(\alpha),$$
(70)

BERKELE

$$y^* = xh_y^*\cos(\psi)\sin(\alpha) + y(1 + h_y^*\sin(\psi)\sin(\alpha)) + z\sin(\psi)\tan(\alpha),$$
(71)

$$z^* = xh_z^*\cos(\psi)\sin(\alpha) + yh_z^*\sin(\psi)\sin(\alpha) + z/\cos(\alpha),$$
(72)

$$p_x^* = p_x / \cos(\alpha) - h \cos(\psi) \tan(\alpha) / \cos(\alpha), \tag{73}$$

$$p_{y}^{*} = p_{y}/\cos(\alpha) - h\sin(\psi)\tan(\alpha)/\cos(\alpha), \tag{74}$$

$$p_z^* = p_z - p_x \cos(\psi) \tan(\alpha) - p_y \sin(\psi) \tan(\alpha) + h \tan^2(\alpha),$$
(75)

where ψ is the crossing plane angle in the x - y plane, α is the half crossing angle in the $\tilde{x} - z$ plane, $h = p_z + 1 - \sqrt{(p_z + 1)^2 - p_x^2 - p_y^2}, h_i^* = \frac{\partial}{\partial p_i^*} h^*(p_x^*, p_y^*, p_z^*)$, and $h^*(p_x^*, p_y^*, p_z^*) = h(p_x^*, p_y^*, p_z^*)$.

Refs: Hirata, Leunissen, et. al.

LAWRENCE BERKELEY NATIONAL LABORATORY

$$x^{n+1} = x^{n}$$

$$Px^{n+1} = Px^{n} + \frac{qV}{E_{s}} \sin(\omega z^{n} / c)$$

$$z^{n+1} = z^{n}$$

$$\delta E^{n+1} = \delta E^{n} + \frac{qV}{E_{s}} \frac{\omega}{c} \cos(\omega z^{n} / c) x^{n}$$

One Turn Transfer Map with Beam-Beam and Crab Cavity

$M = Ma M1 Mb M1^{-1} M M2^{-1} Mc M2$

Ma: transfer map from head-on crossing angle beam-beam collision
Mb,c: transfer maps from crab cavity deflection
M1-2: transfer maps between crab cavity and collision point
M: one turn transfer map of machine

Luminosity vs. Beta* for LHC Crab Cavity Compensation

LHC Physical Parameters for Testing Crab Cavity

BERKELEY LAB

Beam energy (TeV)	7
Protons per bunch	11.5e10
β * (m)	0.25
Rms spot size (mm)	0.0112
Betatron tunes	(0.31,0.32)
Rms bunch length (m)	0.075
Synchrotron tune	0.0019
Momentum spread	0.111e-3
Crab cavity RF frequency (MHz)	400.0/800.0
$eta^1_{ ext{crab}}/eta^2_{ ext{crab}}$ (m)	2616/1023

Ref: Y. Sun, et al, PRSTAB 13, 031001 (2001)

LAWRENCE BERKELEY NATIONAL LABORATORY

Amplitude and phase jitters of crab cavity will cause offset errors at the collision point.

$$x = A\sin(2\pi ft)$$

T0= 26.659e3/2.99792458e8=8.892485e-5 secs

A sin(2π 0.0028455952 i) -> 32 Hz A sin(2π 2.84560 i) -> 32 kHz A sin(2π 5.6911904 i) -> 64 kHz A sin(2π 8.892485 i) -> 100 kHz A sin(2π 17.78497 i) -> 200 kHz

Ref:R. Calaga, et al. in Proceedings of PAC07

LAWRENCE BERKELEY NATIONAL LABORATORY

Emittance Evolution 400MHz Cavity, 32 Hz Modulation

Emittance Evolution 400MHz Cavity, 32k Hz Modulation

Emittance Evolution 400MHz Cavity, 64k Hz Modulation

BERKELEY LAB

_AWRENCE BERKELEY NATIONAL LABORATORY

Emittance Evolution 400MHz Cavity, 100k Hz Modulation

Emittance Evolution 400MHz Cavity, 200k Hz Modulation

0.158211, -1.70395e-05

AWRENCE BERKELEY NATIONAL LABORATORY

Emittance Evolution 800MHz Cavity, 32 Hz Modulation

BERKELEY LAB

16480.6, 5.02630e-10

Emittance Evolution 800MHz Cavity, 64k Hz Modulation

AWRENCE BERKELEY NATIONAL LABORATORY

Emittance Evolution 800MHz Cavity, 100k Hz Modulation

AWRENCE BERKELEY 19939, 3, 5,027890-10

Emittance Evolution 800MHz Cavity, 200k Hz Modulation

Horizontal rms size and Emittance Evolution (800MHz Cavity, 64k Hz Modulation, 0.025 sigma)

Horizontal rms size and Emittance Evolution with Different Working Points (800MHz Cavity, 64k Hz Modulation, 0.025 sigma)

Integrated Lum. Vs. Offset with 400 MHz Crab Cavity

AWRENCE BERKELEY NATIONAL LABORATORY

Integrated Lum. Vs. Offset with 800 MHz Crab Cavil Π BERKELEY LAB 2.1e+34 32 Hz 32k Hz 64k Hz 2e+34 100k Hz 200k Hz 1.9e+34 1.8e+34 emittance growth 1.7e+34 1.6e+34 1.5e+34 2,1e+34 'lumoffscan' u 1:3 1.4e+34 2e+34 1.3e+34 1.9e+34 1.2e+34 0,05 0.1 0,15 0.2 0,25 Û offset (sigma) 1.8e+34 -0.0404692, 1.11551e+34 1.7e+34

LAWRENCE BERKELEY NATIONAL LABORATORY

Ô

36.3018, 1.92828e+34

10

5

15

25

30

35

20

1.6e+34

1.5e+34

1.4e+34

1.3e+34

1,2e+34

- 1. Nominal tune work point (0.31,0.32)
- 2. Horizontal tune scan for 400 MHz crab cavity
- 3. Vertical tune scan for 400 MHz crab cavity
- 4. Horizontal tune scan for 800 MHz crab cavity
- 5. Vertical tune scan for 800MHz crab cavity

Integrated Lum. (5k-20k Turns) vs. Horizontal Tune 400 MHz Crab Cavity

LAWRENCE BERKELEY NATIONAL LABORATORY

Integrated Lum. (5k-20k Turns) vs. Horizontal Tune 800 MHz Crab Cavity

_AWRENCE BERKELEY NATIONAL LABORATOR'

AWRENCE BERKELEY ΝΑΤΙΠ

turns

Horizontal Rms Size Evolution with Working Points (0.305,0.32) and (0.325,0.32)

AWRENCE BERKELEY NATIONAL LABORATORY

Summary and future work

- crab cavity jitter driven time dependent offset errors could cause significant emittance growth and loss of luminosity under some modulation frequency
- outside modulation resonance frequency, no sigificant emittance growth
- some increase of horizontal and vertical tune helps improve luminosity
- continue the study of the two-dimensional working point scan with crab cavity compensation
- explore the potential frequency bands driving emittance growth
- single crab cavity global compensation

Appendix: LHC Offset Beam-Beam Collision Studies

- The offset collision is unavoidable due to the different bunch collision schemes at LHC
- Such offset collision might cause emittance growth that degrades luminosity lifetime and experimental conditions

Emittance Growth vs. Offset

Emittance Growth vs. Tune

LAWRENCE BERKELEY NATIONAL LABORATORY

Transverse Emittance Evolution with Working Point (0.31,0.31)

Transverse Emittance Evolution with Working Point (0.31,0.325)

AWRENCE BERKELEY NATIONAL LABORATORY

Transverse Emittance Evolution with Working Point (0.31,0.335)

AWRENCE BERKELEY NATIONAL LABORATOR

Summary and future work

- offset beam-beam collision could cause emittance growth
- the extent of emittance growth depends on the tune working points and the offset amplitude
- explore the effects of offset collision in horizontal direction
- include the effects of long-range beam-beam
- include the crossing angle collision effects