Parallel-bar TEM-type Cavities

Jean Delayen Subashini de Silva

Center for Accelerator Science Old Dominion University and Thomas Jefferson National Accelerator Facility

> CM14 Fermilab 26-28 April 2010

Parallel Bar Cavity Concept

- Compact design supports low frequencies
- For deflection and crabbing of particle bunches
- Cavity design Two Fundamental TEM Modes
 - 0 mode :- Accelerating mode
 - $-\pi$ mode :- Deflecting or crabbing mode

Parallel Bar Cavity Concept

E field on mid plane (Along the beam line)

Jefferson Lab

B field on top plane

Deflection is due to the interaction with the Electric Field

Parallel Bar Cavity Applications

- **Deflecting Cavity** Jefferson Lab 12 GeV Upgrade (499 MHz)
 - supported by DOE ARRA to JLab and STTR Phase I to Niowave, (Delayen PI)
- Crab Cavity
 - LHC IR Upgrade (400 MHz)
 - supported by Phase I STTR to Niowave (Delayen PI)
 - Jefferson Lab EIC (500 MHz)
- Advantages

- Compact size
- Lower Frequencies
- Fundamental mode with lowest frequency
- Low surface fields
- Higher shunt impedances

Parallel Bar Cross Sections

Optimizing condition – Obtain a higher deflection with lower surface fields

(d)

(C)

- Increasing effective deflecting length along the beam line increases net transverse deflection seen by the particle
- Racetrack shaped structure (d) has better performance with higher deflection for lower surface fields

Transverse Deflection

Transverse Deflection

- Transverse deflecting voltage (V_T) for a single cell cavity (At E_T = 1 MV/m) is 0.3 MV
- Achievable transverse deflection per cavity at 499 MHz
 - For a surface electric field of $E_P = 40 \text{ MV/m}, V_T = 5.84 \text{ MV}$
 - For a surface magnetic field of $B_P = 100 \text{ mT}, V_T = 4.58 \text{ MV}$

Design Parameters	Value (mm)
Cavity reference length	300.4
Cavity height	300.4
Cavity width	400.0
Bar width	60.0
Bar length	160.0
Beam aperture	40.0

Mode Separation by Rounding Edges

Design Sensitivities – Rounding Edges

Design Sensitivities – Rounding Edges

Optimization of Bar Width – 400 MHz

Design Parameters	Value (mm)
Cavity reference length	374.7
Cavity height	374.7
Cavity width	400.0
Bar width	85.0
Bar length	250.0
Beam aperture	100.0

Jefferson Lab

Bar Width = 50 mm

Optimization of Bar and Cavity Length – 400 MHz

Optimized Cavity Geometry and Field Profiles – 499 MHz

Compact Design Dimensions	Value (mm)
Cavity reference length	388.4
Cavity height	305.0
Cavity width	250.0
Bar width	50.0
Bar length	278.0
Beam aperture	40.0

U/m 1.20e7 1.13e7 9.76e6 8.26e6 6.76e6 5.26e6 3.75e6 2.25e6 7.51e5 8 2.25e6 7.51e5 8 2.25e6 7.51e5	A/m 31651 29673 25716 21768 17884 13847 9891 5935 1978 8 0 1978 2 2 2 2 2 2 2 2 2 2 2 2 2
E field on mid plane	B field on top plane
U/m 9.86e6 9.24e6 8.01e6 6.78e6 5.55e6 4.31e6 3.08e6 1.85e6 6.16e5 8	А/m 25725 24117 20902 17686 14470 11255 8039 4823 1608 9
	z ×
Iransverse E Field	

Optimized Cavity Geometry and Field Profiles – 400 MHz

Compact Design Dimensions	Value (mm)
Cavity reference length	456.7
Cavity height	384.4
Cavity width	400.0
Bar width	85.0
Bar length	332.0
Beam aperture	100.0

Jefferson Lab

A/m

B field on top plane

Transverse Deflecting Voltage along Beam Line Cross Section – 400 MHz

$$\frac{V_T}{V_T(r=0)} = 3.0 \times 10^{-5} \Delta x^2 + 1.0$$

R = 100 mm

Jefferson Lab

 $\frac{V_T}{V_T(r=0)} = -3.0 \times 10^{-5} \Delta y^2 + 1.0$

	Direction	$\Delta V_T / V_T$
		(At R = 50 mm)
	х	1.33 %
	У	1.46 %

Cavity Properties

Parameter	499 MHz ⁽¹⁾	499 MHz	400 MHz	KEK Cavity [*]	Unit
Frequency of π mode	499.4	499.2	400.7	501.7	MHz
$\lambda/2$ of π mode	300.4	300.4	374.7	299.8	mm
Frequency of 0 mode	519.9	517.8	413.05	~ 700 MHz	MHz
Cavity reference length	388.4	394.4	456.7	299.8	mm
Cavity width	250.0	290.0	400.0	866.0	mm
Cavity height	305.0	304.8	384.4	483.0	mm
Bars length	278.0	284	332.0	_	mm
Bars width	50.0	67.0	85.0	_	mm
Aperture diameter	40.0	40.0	100.0	130.0	mm
Deflecting voltage (V_T^*)	0.3	0.3	0.375	0.3	MV
Peak electric field (E_T^*)	2.06	1.85	2.18	4.32	MV/m
Peak magnetic field (B_T^*)	6.54	6.69	7.5	12.45	mT
Geometrical factor ($G = QR_S$)	64.7	67.96	83.9	220	Ω
$[R/Q]_T$	942.75	933.98	317.92	46.7	Ω
$R_T R_S$	6.1 10 ⁴	6.3 10 ⁴	2.67 10 ⁴	1.03 10 ⁴	Ω^2
At $E_T^* = 1 \text{ MV/m}$					

499 MHz ⁽¹⁾

31 cm

* K. Hosoyama et al, "Crab cavity for KEKB", Proc. of the 7th Workshop on RF Superconductivity, p.547 (1998)

Higher Order Modes – 400 MHz

350.000

							•	•							
			Field direction on beam axis		[R/Q	[R / Q] (Ω)		$harpoint \pi$ mo	ode						
Mode	Frequency (MHz)	Mode of Operation	E	В	Direct Integral Method	Using Panofsky Wenzel Theorem	(<u>g</u>) 200.000 (<u></u>) (<u>)</u> 200.000	0 mod	e						
						(r ₀ = 5 mm)	<u>F</u> 150.000	/	-						
1	400.60	Deflecting	х	у	317.98	317.16	100.000								
2	412.94	Acclerating	Z		81.12	-	-								
3	477.76	Acclerating	z		10.64	-	50.000 -		•		•			++++++	+
4	489.70	Deflecting	х	У	2.124	2.13	-						•		
5	524.13	Deflecting	х	У	48.24	48.42	0.000	•			••	••	•	••	
6	612.03	Accelerating	Z		47.89	-	40	500 500	600	700	800	900	1	000	1100
7	713.89	Deflecting	х	У	2.85	2.6				_		/s			
8	737.67	Deflecting	х	У	4.2	3.5				Fr	equend	;y (M⊦	iz)		
9	793.85			z	0.0	0.0	_	-1					40	~ • •	
10	796.26	Acclerating	Z		49.3	-	Fund	damentai	IVIOC	ie Sep	Darati	on =	: 12.	3 10	IHZ
11	810.72	Deflecting	у	x	0.0199	0.0043			<i></i>						
12	836.70	Deflecting	у	x	65.04	62.51		_			>				
13	855.67			z	0.0	0.0									
14	868.28			z	0.0	0.0			<u> </u>			1			
15	924.27	Deflecting	у	x	6.29	6.87		4		7	/				
16	941.54	Deflecting	х	у	19.53	16.87					Y				
17	999.08			z	0.0	0.0			~						
18	1013.13	Deflecting	х	у	0.0144	0.00761									
19	1018.24			z	0.0	0.0									
20	1032.98	Accelerating	Z		15.0	-						A			

Modes of Interest – 400 MHz

Asymmetry Study – 499 MHz

- Study of mixing in transverse and longitudinal voltage along the beam line at the fundamental mode, due to asymmetry in
 - Cavity Width
 - Cavity Edge Radius
 - Bar Width
 - Bar Length

Jefferson Lab

- Bar Separation

Asymmetry in Cavity Width

Jefferson Lab

Asymmetry in Cavity Edge Radius

Asymmetry in Bar Width

◆ 40 mm ■ 50 mm ▲ 60 mm

Asymmetry in Bar Length

Jefferson Lab

Asymmetry in Bar Separation

Jefferson Lab

◆ 40 mm ■ 50 mm ▲ 60 mm

DID DMINION UNIVERSITY

Preliminary Stress Analysis

Material Properties of Nb*

Property	SI Units	English Units			
Modulus -	1.03 E+11 Pa	1.49 E+07 psi			
Room Temp					
Modulus -	1.23 E+11 Pa	1.79 E+07 psi			
Cryo Temp					
Poisson's	0.38				
Ratio					
Density	8.58E-03	0.31			
	g/mm ³	lb/in ³			
Yield - RT	4.83 E+07 Pa	7.0 ksi			
Yield - Cryo	5.77 E+08 Pa 83.7 ksi				

- Analysis using properties at room temperature
- Cavity wall thickness = 3 mm
- Mechanical model

Jefferson Lab

- Standard gravity = 9.806 ms⁻²
- Pressure normal to the cavity outer surface
 = 0.20265 Mpa (29.392 psi)
- Stress = 432 MPa > Yield Strength = 48 MPa

* K.M.Wilson at al. "Mechanical cavity design for 100MV upgrade cryomodule" Proceedings of PAC2003

Cavity Deformations

Directional Deformations

- x axis \rightarrow 9 mm
- − y axis \rightarrow 0.8 mm
- z axis \rightarrow 0.3 mm

Test Cryostat Concept

Test Cryostat Concept

SECTION A-A

