Parallel-bar TEM-type Cavities

Jean Delayen
Subashini de Silva

Center for Accelerator Science
Old Dominion University
and
Thomas Jefferson National Accelerator Facility

CM14
Fermilab 26-28 April 2010

Parallel Bar Cavity Concept

- Compact design supports low frequencies
- For deflection and crabbing of particle bunches
- Cavity design - Two Fundamental TEM Modes
- 0 mode :- Accelerating mode
- π mode :- Deflecting or crabbing mode

Parallel Bar Cavity Concept

E field on mid plane (Along the beam line)

B field on top plane

Deflection is due to the interaction with the Electric Field

Parallel Bar Cavity Applications

- Deflecting Cavity - Jefferson Lab 12 GeV Upgrade (499 MHz)
- supported by DOE ARRA to JLab and STTR Phase I to Niowave, (Delayen PI)
- Crab Cavity
- LHC IR Upgrade (400 MHz)
- supported by Phase I STTR to Niowave (Delayen PI)
- Jefferson Lab EIC (500 MHz)
- Advantages
- Compact size
- Lower Frequencies
- Fundamental mode with lowest frequency
- Low surface fields
- Higher shunt impedances

Parallel Bar Cross Sections

Optimizing condition - Obtain a higher deflection with lower surface fields

Peak Surface Fields

Design Structure	$\mathbf{E}_{\mathbf{P}} / \mathbf{E}_{\mathbf{T}}{ }^{*}$	$\mathbf{B}_{\mathbf{P}} / \mathbf{E}_{\mathbf{T}}{ }^{*}$ $(\mathbf{m T} / \mathbf{M V} / \mathbf{m})$
(a)	3.30	11.54
(b)	2.80	10.31
(c)	2.61	8.86
(d)	2.31	8.16
At $\mathrm{E}_{\mathrm{T}}{ }^{*}=1 \mathrm{MV} / \mathrm{m}$		

- Increasing effective deflecting length along the beam line increases net transverse deflection seen by the particle
- Racetrack shaped structure (d) has better performance with higher deflection for lower surface fields

Transverse Deflection

$\vec{V}_{T}=\int_{-\infty}^{+\infty}\left[\vec{E}_{x}(z)+\vec{v} \times \vec{B}_{y}(z)\right] e^{j \frac{\omega z}{c}} d z$

Transverse E Field (E_{x}) (V/m)

Transverse H Field (H_{Y}) (A/m)

Resultant $\mathrm{V}_{\mathrm{T}}{ }^{*}=0.3 \mathrm{MV}$ At $E_{T}{ }^{*}=1 \mathrm{MV} / \mathrm{m}$

Transverse Deflection

- Transverse deflecting voltage $\left(\mathrm{V}_{T}\right)$ for a single cell cavity (At E_{T} $=1 \mathrm{MV} / \mathrm{m}$) is 0.3 MV
- Achievable transverse deflection per cavity at 499 MHz
- For a surface electric field of $\mathrm{E}_{\mathrm{P}}=40 \mathrm{MV} / \mathrm{m}, \mathrm{V}_{\mathrm{T}}=5.84 \mathrm{MV}$
- For a surface magnetic field of $\mathrm{B}_{\mathrm{P}}=100 \mathrm{mT}, \mathrm{V}_{\mathrm{T}}=4.58 \mathrm{MV}$

Design Parameters	Value (mm)
Cavity reference length	300.4
Cavity height	300.4
Cavity width	400.0
Bar width	60.0
Bar length	160.0
Beam aperture	40.0

\rightarrow E Field \rightarrow E and B Field

Mode Separation by Rounding Edges

Frequency separation due to beam pipe $=1.21 \mathrm{MHz}$

Design Sensitivities - Rounding Edges

\rightarrow Along $\mathrm{x}-$-Along $\mathrm{y} \rightarrow$ Along z

- Along x - Along y Δ Along z

Along \mathbf{x}

Along y

Along z

Design Sensitivities - Rounding Edges

- Along x - Alongy \triangle Along z

Along x

Along y

Optimization of Bar Width - 400 MHz

Design Parameters	Value (mm)
Cavity reference length	374.7
Cavity height	374.7
Cavity width	400.0
Bar width	85.0
Bar length	250.0
Beam aperture	100.0

Bar Width $=50$ mm

Bar Width $=100$

Optimization of Bar and Cavity Length 400 MHz

Optimized Cavity Geometry and Field Profiles - 499 MHz

Compact Design Dimensions	Value (mm)
Cavity reference length	388.4
Cavity height	305.0
Cavity width	250.0
Bar width	50.0
Bar length	278.0
Beam aperture	40.0

E field on mid plane

B field on top plane

B Field

Optimized Cavity Geometry and Field Profiles - 400 MHz

E field on mid plane

Value (mm)

Compact Design Dimensions	Value $(\mathbf{m m})$
Cavity reference length	456.7
Cavity height	384.4
Cavity width	400.0
Bar width	85.0
Bar length	332.0
Beam aperture	100.0

U/m .68e6 5.32 e 6 4.61 e6
3.9 Эe6
3.19e6
2.48 e 6
1.77 e 6

55
-

(2)

Surface Fields

499 MHz

Surface B Field

$$
\begin{aligned}
& \frac{E_{P}}{E_{T}}=2.06 \\
& \frac{B_{P}}{E_{T}}=6.54 \mathrm{mT} /(\mathrm{MV} / \mathrm{m})
\end{aligned}
$$

400 MHz

Transverse Deflecting Voltage along Beam Line Cross Section - 400 MHz

$$
\frac{V_{T}}{V_{T}(r=0)}=3.0^{\times} 10^{-5} \Delta x^{2}+1.0
$$

$\frac{V_{T}}{V_{T}(r=0)}=-3.0 \times 10^{-5} \Delta y^{2}+1.0$

Direction	$\Delta \mathrm{V}_{\mathrm{T}} / \mathrm{V}_{\mathrm{T}}$ $(A t \mathrm{R}=50 \mathrm{~mm})$
x	1.33%
y	1.46%

Cavity Properties

Parameter	$\begin{gathered} 499 \\ \mathrm{MHz}{ }^{(1)} \end{gathered}$	$\begin{gathered} 499 \\ \mathrm{MHz} \end{gathered}$	$\begin{aligned} & 400 \\ & \mathrm{MHz} \end{aligned}$	KEK Cavity	Unit
Frequency of π mode	499.4	499.2	400.7	501.7	MHz
$\lambda / 2$ of π mode	300.4	300.4	374.7	299.8	mm
Frequency of 0 mode	519.9	517.8	413.05	$\sim 700 \mathrm{MHz}$	MHz
Cavity reference length	388.4	394.4	456.7	299.8	mm
Cavity width	250.0	290.0	400.0	866.0	mm
Cavity height	305.0	304.8	384.4	483.0	mm
Bars length	278.0	284	332.0	-	mm
Bars width	50.0	67.0	85.0	-	mm
Aperture diameter	40.0	40.0	100.0	130.0	mm
Deflecting voltage (V_{T}^{*})	0.3	0.3	0.375	0.3	MV
Peak electric field $\left(E_{T}{ }^{*}\right)$	2.06	1.85	2.18	4.32	MV/m
Peak magnetic field ($B_{T}{ }^{*}$)	6.54	6.69	7.5	12.45	mT
Geometrical factor ($G=Q R_{S}$)	64.7	67.96	83.9	220	Ω
$[R / Q]_{T}$	942.75	933.98	317.92	46.7	Ω
$R_{T} R_{S}$	6.110^{4}	6.310^{4}	2.6710^{4}	1.0310^{4}	Ω^{2}
$\text { At } E_{T}^{*}=1 \mathrm{MV} / \mathrm{m}$					

* K. Hosoyama et al, "Crab cavity for KEKB", Proc. of the 7th Workshop on RF Superconductivity, p. 547 (1998)

Higher Order Modes - 400 MHz

Mode	Frequency (MHz)	Mode of Operation	Field direction on beam axis		[R/Q] (Ω)	
			E	B	Direct Integral Method	Using Panofsky Wenzel Theorem
						($\mathrm{r}_{0}=5 \mathrm{~mm}$)
1	400.60	Deflecting	x	y	317.98	317.16
2	412.94	Acclerating	z		81.12	-
3	477.76	Acclerating	z		10.64	-
4	489.70	Deflecting	x	y	2.124	2.13
5	524.13	Deflecting	x	y	48.24	48.42
6	612.03	Accelerating	z		47.89	-
7	713.89	Deflecting	x	y	2.85	2.6
8	737.67	Deflecting	x	y	4.2	3.5
9	793.85			z	0.0	0.0
10	796.26	Acclerating	z		49.3	-
11	810.72	Deflecting	y	x	0.0199	0.0043
12	836.70	Deflecting	y	x	65.04	62.51
13	855.67			z	0.0	0.0
14	868.28			z	0.0	0.0
15	924.27	Deflecting	y	x	6.29	6.87
16	941.54	Deflecting	x	y	19.53	16.87
17	999.08			z	0.0	0.0
18	1013.13	Deflecting	x	y	0.0144	0.00761
19	1018.24			z	0.0	0.0
- 20	1032.98	Accelerating	z		15.0	-

Fundamental Mode Separation $=12.3 \mathrm{MHz}$

FISA

Modes of Interest - 400 MHz

Asymmetry Study - 499 MHz

- Study of mixing in transverse and longitudinal voltage along the beam line at the fundamental mode, due to asymmetry in
- Cavity Width
- Cavity Edge Radius
- Bar Width
- Bar Length
- Bar Separation

Asymmetry in Cavity Width

Asymmetry in Cavity Edge Radius

Asymmetry in Bar Width

Jefferson Lab

Asymmetry in Bar Length

Asymmetry in Bar Length (mm)

$\frac{\text { sivp }}{\mathrm{O}_{\mathrm{LD}}}$
DOMINION UNIVERSITY

Asymmetry in Bar Separation

Emittance Growth

Preliminary Stress Analysis

Material Properties of Nb^{*}

Property	SI Units	English Units
Modulus - Room Temp	$1.03 \mathrm{E}+11 \mathrm{~Pa}$	$1.49 \mathrm{E}+07 \mathrm{psi}$
Modulus - Cryo Temp	$1.23 \mathrm{E}+11 \mathrm{~Pa}$	$1.79 \mathrm{E}+07 \mathrm{psi}$
Poisson's Ratio	0.38	
Density	$8.58 \mathrm{E}-03$ $\mathrm{~g} / \mathrm{mm}^{3}$	0.31 $1 \mathrm{lb} / \mathrm{in}^{3}$
Yield - RT	$4.83 \mathrm{E}+07 \mathrm{~Pa}$	7.0 ksi
Yield - Cryo	$5.77 \mathrm{E}+08 \mathrm{~Pa}$	83.7 ksi

- Analysis using properties at room temperature
- Cavity wall thickness $=3 \mathrm{~mm}$
- Mechanical model
- Standard gravity $=9.806 \mathrm{~ms}^{-2}$
- Pressure normal to the cavity outer surface $=0.20265 \mathrm{Mpa}(29.392 \mathrm{psi})$
Stress $=432 \mathrm{MPa}>$ Yield Strength $=48 \mathrm{MPa}$

Cavity Deformations

Directional Deformations

- x axis $\rightarrow 9 \mathrm{~mm}$
- y axis $\rightarrow 0.8 \mathrm{~mm}$
- z axis $\rightarrow 0.3 \mathrm{~mm}$

Test Cryostat Concept

Test Cryostat Concept

