Ongoing Neutrino Programme

Jenny Thomas UCL DOE Annual Science & Review July 12-14, 2010

Experiments

- On the Booster beam there are
 - SciBooNE : analysis phase
 - Mini-BooNE : ongoing data taking
- On the NuMI beam we have
 - MINERvA : data taking
 - MINOS : data taking
- This is highlights only

Fermilab

SciBooNE data-taking

- Jun. 2007 Aug. 2008
- 95% data efficiency
- 2.52x10²⁰ POT in total
- neutrino $: 0.99 \times 10^{20} \text{ POT}$
- antineutrino: 1.53x10²⁰ POT
- Request to PAC: 2.0x10²⁰ POT

SciBooNE Intro

100 m

440 m

Precise measurements of v and vbar x-sec needed by T2K and other experiments for background estimation : small signal to noise

- Non QE $v\mu$ interactions
- Events which look like v_e

MiniBooNE near detector

- Direct measurement of beam v_es
- v_u disappearance

Ev (GeV)

SciBoone Detector

Physics Results

- Peer reviewed journals
 - Phys.Rev.D 78 112004 (2008) limit on vµ CC coherent π production
 - Phys.Rev.D **81** 03304 (2010) measurements of v_{μ} NC π^{0} production
 - arXiv:1005.0059 (accepted by Phys.Rev.D RC) v_{μ} NC coherent π production
- Conference Proceedings
 - NuInt05, NuInt07(8), NuInt09 (5)
 - NuFact07, NuFact08 (2), NuFact09 (2)
 - ICHEP08
 - NOW 2008, NOW 2009
 - PANIC 08

$NC\pi^0$ production

v_{μ} disappearance

🗲 Fermilab

Prospects

- Next publications
 - Neutrino disappearance (joint with MiniBooNE) -ICHEP 10
 - \sqrt{v} CC coherent pion production autumn 2010
 - Neutral current elastic scattering end of 2010
 - CC QE cross section end of 2010

FNAL statistics

•5 FTEs in total on MiniBoone /~64 total collaborators

8 FNAL personnel (about 1 FTEs)

Status of MiniBooNE Oscillation Search

- MiniBooNE searches for LSND-like oscillations $v_{\mu} \rightarrow v_{e}$ and $\overline{v}_{\mu} \rightarrow \overline{v}_{e}$ (LSND used anti-neutrinos)
 - Appearance signals on this scale could indicate new physics
 - New antineutrino results announced (June 14) with 5.7e20 POT
 - Neutrino mode: excess of events below 475 MeV
 - Antineutrino mode: excess of events above 475 MeV.

6.5e20 POT v beam

5.7e20 POT \overline{v} beam

9 Jenny Thomas, Fermilab - DOE S&T Review July 11-13, 2010

Status of MiniBooNE Oscillation Search

- Regions allowed/excluded by fit to 2v mixing hypothesis shown below for neutrino and antineutrino beams
 - 475 1250 MeV is official oscillation fit region.
 - Lack of excess above 475 MeV in neutrino beam inconsistent with LSND oscillations
 - New antineutrino data favors LSND-like signal at a 99.4% CL

5.7e20 POT v beam

Appears to be a difference between neutrinos and antineutrinos Jenny Thomas, Fermilab - DOE S&T Review July 11-13, 2010

Projected MiniBooNE Results in 2012

- Continue to run with antineutrino beam with goal of reaching 10e20 POT
 - Blue bands show range of outcomes (1σ) with 4.3e20 POT simulated data added
 - Simulated data drawn from current best fit signal

Assuming additional 4.3e20 comes from current best fit to data

- The current 2.7 σ (stat+sys) excess (200 1250 MeV) grows to ~3.2 σ .
- The current 3σ statistical excess (200 1250 MeV) grows to ~4 σ .
 - AT LEAST WE WILL KNOW IT IS NOT A STATISTICL FLUCTUATION
- Preference of 2v fit for LSND-like signal grows from 99.4% (2.7 σ) to 99.86% (3.2 σ)

🗲 Fermilab

MiniBooNE in 2012 and beyond

Analyses up to 2012

- Analysis of final electron antineutrino appearance data (10E20 POT).
- Some continued cross-section analysis (not mentioned in this talk but high statistics of MiniBooNE data has resulted in 5 cross-section publications to date and 3 more close to journal submission)
- Incorporating any future SciBooNE constraints, and perform muon (anti)neutrino disappearance measurements (some exotic oscillation models expect large antineutrino disappearance to explain LSND/MiniBooNE signal).

🚰 Fermilab

MiniBooNE Future

- Possible scenarios for MiniBooNE post 2012 to produce Ironclad (>5σ) resolution of LSND effect
 - MiniBooNE detector moved to 200m near location to form near/far ratio to confirm oscillation hypothesis (1.5 years to move detector plus 1 year of running).
 - MiniBooNE detector left in place to keep acquiring desperately needed stats in antineutrino mode, 2nd detector constructed at 200m near location to form near/far ratio (3.5 years to construct detector plus 1 year of running).

FNAL statistics

15 FTEs in total on MiniBoone /~80 total collaborators
11 FNAL personnel (about 3 FTEs)

Steve Brice – past spokesperson
Sam Zeller, Chris Polly – Analysis coordinators
Ray Stefanski: timing analysis
Tom Kobilarcik: runs operations meetings

NuMI

- Numi has delivered exceptional running the last year (orange = anti-v)=special runs)
- Hopefully it will last for the next year!

MINERvA: Physics Goals

- MINERvA sits upstream of MINOS Near Det.
- Goals : Study v interactions in hi-fi detail
 - Measurements for current and future oscillation studies :
 - Measure background processes to v_e
 - **.** For MINOS and NOvA (v (sig&bkg) int modelling
 - Measure (relative) nuclear energy loss on diff. targets
 - First direct comparison of weak interactions on a variety of strongly bound systems
- Why MINERvA at NuMI?
 - High intensity for precision studies
 - Wide range of available energies
- MINERvA detector

15

Supports reconstruction of broad range of final states

Interaction Channels at MINERvA

**for 4x10 ²⁰ Protons On Target in Low Energy, 12x10 ²⁰ POT in	Chan
Medium Energy NEUGEN prediction Acceptance corrections not included 3 ton fiducial mass assumed	Quasi
	Resor
	Trans
	DIS

Channel	Exptd Stats on fully active Target**
Quasi-Elastic	0.8M (CC)
Resonance	1.7M (CC)
Transition	2.1M (CC)
DIS	4.3M (CC)
Coherent Pion Production	89k CC 44k NC

‡ Fermilab

Status of Data-taking and Processing

- Reconstruction and calibration passes on first half of antineutrino data complete
- Muons matched to tracks in MINOS, plot shows muon angle at vertex vs total momentum
- Neutrino data analysis underway
- Detector live time >95%
- Neutrino CC candidates per day (in anti-neutrino mode) per POT
- 3 Ton fiducial mass
- 11/09-3/10 : 0.8×10²⁰ POT anti-v
- 3/10-present : 1.0×10^{20} POT v

17 Jenny Thomas, Fermilab - DOE S&T Review July 11-13, 2010

MINERvA Recent Test Beam Activities

- Built 40-plane prototype of MINERvA detector to calibrate calorimeter and tracker response at energies produced by NuMI neutrinos (see plot at right)
- **Designed and commissioned (w/FNAL)** new tertiary beam to provide low momentum p,π,K,μ , measurements of both charges of particles (0.4-1.2GeV)

X-view

MINERvA Highlights over the past year

- Start detector installation: 7/2009
- Installation complete: 3/2010
- Begin Neutrino run 3/23/2010
- CD-4 granted on 6/28/2010
 - On time (3 months early)
 - Under Budget (Estimate 9% under)
- Vibrant Guest scientist program
 - Students from Peru, Brazil, and Mexico for long stays
 - Test Beam Coordinator : Rik Gran
 - Co-Spokesperson : Kevin McFarland

FNAL statistics

47 FTEs in total on MINERvA /~80 total collaborators
Currently 6 physicists at FNAL (about 4.8 FTEs)

•Jyotsna Osta —post-doc, Test beam detector construction, source mapping, commissioning, test beam data taking

•Ray Stefanski – Test beam design work, survey and alignment checks, magnetic fields, shift coordinator after 2/2010

•Dave Schmitz —Lederman Fellow, Reconstruction coordinator, code releaser, co-Run Coordinator until 7/2010

•Dave Boehnlein —Shift coordinator until 2/2010, project documentation coordinator, leaving for DOE 9/2010

•Debbie Harris —co-spokesperson as of 2/2010, MINERvA project manager

🗲 Fermilab

•Jorge Morfin –co-spokesperson until 2/2010, test beam design, nuclear target group leader, Latin American Visitor Coordination

Two detectors mitigate systematic effects
 beam flux mis-modeling
 neutrino interaction uncertainties

The MINOS Experiment

- Two-detector, long baseline neutrino oscillation experiment
- Neutrinos from NuMI beam line
- □ L/E ~ 500 km/GeV
- \Box atmospheric Δm^2

Far Detector neutrino Energy Spectrum

Oscillations fit the data well, 66% of experiments have worse χ²
 Pure decoherence[†] disfavored: > 8σ
 Pure Decay[‡] disfavored: > 6σ (7.8σ if NC events included)

G.L. Fogli *et al.*, PRD 67:093006 (2003) ‡V. Barger *et al.*,PRL 82:2640 (1999) **‡ Fermilab**

Contours

- A number of analysis improvements have been implemented to improve sensitivity by about 10% over previous publications
- Contour includes effects of dominant systematic uncertainties
 - normalization
 - NC background
 - shower energy
 - track energy

†SK preliminary

v_e Appearance Results

- Expect: 49.1±7.0(stat.)±2.7(syst.)
- Observe: 54 events (0.7σ excess)
- At $\delta_{cp}=0: \sin^2\theta_{13}<0.12, 0.20$ (IH)
- Improvements expected from analysis
- Little to be gained from more v running

Making an anti-neutrino beam

MINOS FD anti-v Data

- □ No oscillation Prediction: **155**
- Observe: 97
- □ No oscillations disfavored at 6.3σ
- More anti-v running requested

FNAL statistics

5 publications in the last year
60 FTEs in total on MINOS but reducing /~120 total collaborators
20 FNAL personnel

A.Kreymer and R. Hatcher (CS)
D.Toretta (DAQ)
R.Plunkett (Co-Spoke)
P.Adamson, S. Childress, R. Zwaska (beam)
B.Rebel (MAP chair)

Summary

- Ongoing neutrino programme at FNAL packed with results results
- Neutrino and anti-neutrino differences must be ironed out with more data and possibly significant investment
- FNAL is presently leading in the area of neutrino oscillations and neutrino cross section measurements

