21cm Instrument Simulation Software and Foreground Subtraction

Dave McGinnis

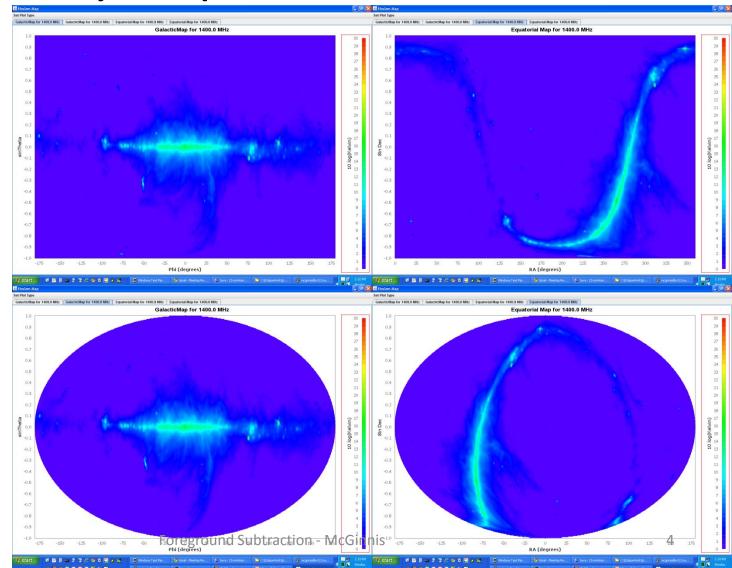
SKY SIMULATION SOFTWARE

Code Suite

- 20 Java classes organized into 7 packages
- Major Packages
 - Sky Map Generator
 - Cylinder Visibility Simulator
 - Cylinder Visibility Modeler
 - Sky Reconstructor

Sky Map Generator Plotter for Haslam Sky Map at 1.4 GHz

- Maps in Healpix format
 - Nside = 512
- Maps use MIT Angelica
 10 parameter
 frequency fit
- Maps are about 100MB in size



Cylinder Visibility Formulation

Formulation of Cylinder Visibilities

Dave McGinnis November 5, 2009

Feed Amplitude

The voltage received at a feed located at coordinate r is:

$$\frac{\nu(\vec{r})}{\sqrt{2R}} = \iint_{\Omega} f(\Omega) a(\Omega) e^{-j\vec{\beta}(\Omega)\cdot\vec{r}} d\Omega$$
(1)

The sky flux amplitude is:

$$|f(\Omega)d\Omega|^2 = \frac{kT_{sky}(\Omega)}{\lambda^2} d\Omega_{\text{pow}}$$
(2)

where $d\Omega_{pow}$ is the differential power solid angle area. The incoming wave vector is:

$$\vec{\beta}(\Omega(\theta,\phi)) = \frac{2\pi}{\lambda} (\sin(\theta)\hat{x} + \cos(\theta)\sin(\phi)\hat{y})$$
(3)

The collecting area of the feed is:

$$A(\Omega) = |a(\Omega)|^2 \tag{4}$$

The noise power generated by the feed amplifier is:

$$P_z = |p_z|^2 \tag{5}$$

If the sky is pixelized into **q** pixels then, the signal amplitude at feed **n** of cylinder **m** is:

$$p_{n,m} = p_{\mathbf{z}_{n,m}} + \sum_{q} \Delta \Omega_{\mathbf{q}} \mathbf{f}_{\mathbf{q}} \mathbf{a}_{\mathbf{q},\mathbf{n},\mathbf{m}} e^{-j\vec{\beta}_{\mathbf{q}}\cdot\vec{r}_{n,m}}$$
(6)

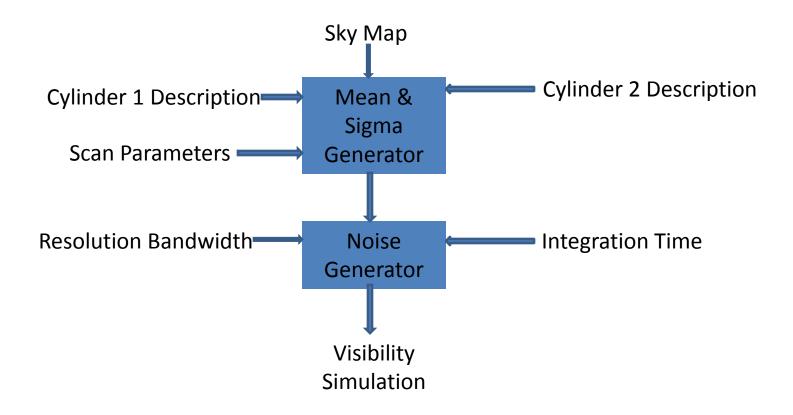
Cylinder Amplitude

A spatial Fourier transform will be taken of the cylinder feed voltage.

4/26/2010

Foreground Subtraction - McGinnis http://projects-docdb.fnal.gov/cgi-bin/ShowDocument?docid=778

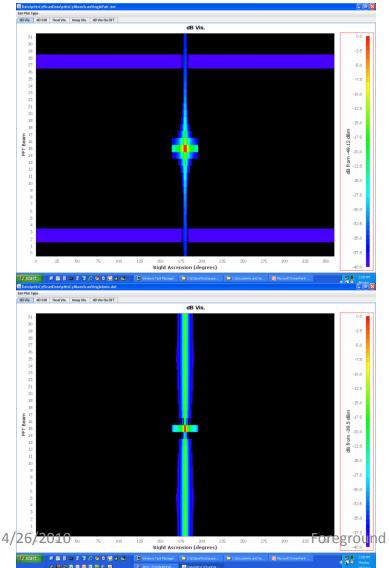
Cylinder Visibility Simulator

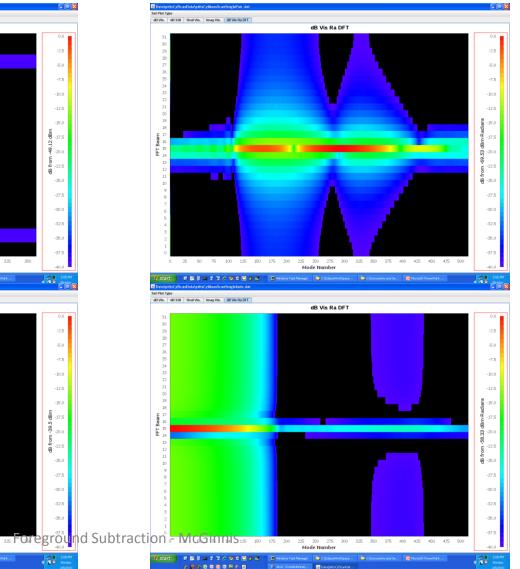


Cylinder Description XML Format

1	*?xml version="1.0" encoding="UTF-8" standalone="no" ?>4bloh>4
2	
3	<feed effwidth="7" imaggain="0" lengthlocation="0" ncosthetaresponsepower="1" noisetemp="75" powerefficiency="0.5" realgain="1" widthlocation="0"></feed>
4	<pre><feed effwidth="7" imaggain="0" lengthlocation="0.145" ncosthetaresponsepower="1" noisetemp="75" powerefficiency="0.5" realgain="1" widthlocation="0"></feed></pre>
5	<feed effwidth="7" imaggain="0" lengthlocation="0.29" ncosthetaresponsepower="1" noisetemp="75" powerefficiency="0.5" realgain="1" widthlocation="0"></feed>
6	<feed effwidth="7" imaggain="0" lengthlocation="0.435" ncosthetaresponsepower="1" noisetemp="75" powerefficiency="0.5" realgain="1" widthlocation="0"></feed>
7	<feed effwidth="7" imaggain="0" lengthlocation="0.58" ncosthetaresponsepower="1" noisetemp="75" powerefficiency="0.5" realgain="1" widthlocation="0"></feed>
8	<pre><feed effwidth="7" imaggain="0" lengthlocation="0.725" ncosthetaresponsepower="1" noisetemp="75" powerefficiency="0.5" realgain="1" widthlocation="0"></feed></pre>
9	<feed effwidth="7" imaggain="0" lengthlocation="0.87" ncosthetaresponsepower="1" noisetemp="75" powerefficiency="0.5" realgain="1" widthlocation="0"></feed>
10	<pre><feed effwidth="7" imaggain="0" lengthlocation="1.015" ncosthetaresponsepower="1" noisetemp="75" powerefficiency="0.5" realgain="1" widthlocation="0"></feed></pre>
11	<feed effwidth="7" imaggain="0" lengthlocation="1.16" ncosthetaresponsepower="1" noisetemp="75" powerefficiency="0.5" realgain="1" widthlocation="0"></feed>
12	<pre><feed effwidth="7" imaggain="0" lengthlocation="1.305" ncosthetaresponsepower="1" noisetemp="75" powerefficiency="0.5" realgain="1" widthlocation="0"></feed></pre>
13	<feed effwidth="7" imaggain="0" lengthlocation="1.45" ncosthetaresponsepower="1" noisetemp="75" powerefficiency="0.5" realgain="1" widthlocation="0"></feed>
14	<pre><feed effwidth="7" imaggain="0" lengthlocation="1.595" ncosthetaresponsepower="1" noisetemp="75" powerefficiency="0.5" realgain="1" widthlocation="0"></feed></pre>
15	<feed effwidth="7" imaggain="0" lengthlocation="1.74" ncosthetaresponsepower="1" noisetemp="75" powerefficiency="0.5" realgain="1" widthlocation="0"></feed>
16	<pre><feed effwidth="7" imaggain="0" lengthlocation="1.885" ncosthetaresponsepower="1" noisetemp="75" powerefficiency="0.5" realgain="1" widthlocation="0"></feed></pre>
17	<feed effwidth="7" imaggain="0" lengthlocation="2.03" ncosthetaresponsepower="1" noisetemp="75" powerefficiency="0.5" realgain="1" widthlocation="0"></feed>
18	<pre><feed effwidth="7" imaggain="0" lengthlocation="2.175" ncosthetaresponsepower="1" noisetemp="75" powerefficiency="0.5" realgain="1" widthlocation="0"></feed></pre>
19	<feed effwidth="7" imaggain="0" lengthlocation="2.32" ncosthetaresponsepower="1" noisetemp="75" powerefficiency="0.5" realgain="1" widthlocation="0"></feed>
20	<pre><feed effwidth="7" imaggain="0" lengthlocation="2.465" ncosthetaresponsepower="1" noisetemp="75" powerefficiency="0.5" realgain="1" widthlocation="0"></feed></pre>
21	<feed effwidth="7" imaggain="0" lengthlocation="2.61" ncosthetaresponsepower="1" noisetemp="75" powerefficiency="0.5" realgain="1" widthlocation="0"></feed>
22	<pre><feed effwidth="7" imaggain="0" lengthlocation="2.755" ncosthetaresponsepower="1" noisetemp="75" powerefficiency="0.5" realgain="1" widthlocation="0"></feed></pre>
23	<feed effwidth="7" imaggain="0" lengthlocation="2.9" ncosthetaresponsepower="1" noisetemp="75" powerefficiency="0.5" realgain="1" widthlocation="0"></feed>
24	<pre><feed effwidth="7" imaggain="0" lengthlocation="3.045" ncosthetaresponsepower="1" noisetemp="75" powerefficiency="0.5" realgain="1" widthlocation="0"></feed></pre>
25	<feed effwidth="7" imaggain="0" lengthlocation="3.19" ncosthetaresponsepower="1" noisetemp="75" powerefficiency="0.5" realgain="1" widthlocation="0"></feed>
26	<pre><feed effwidth="7" imaggain="0" lengthlocation="3.335" ncosthetaresponsepower="1" noisetemp="75" powerefficiency="0.5" realgain="1" widthlocation="0"></feed></pre>
27	<feed effwidth="7" imaggain="0" lengthlocation="3.48" ncosthetaresponsepower="1" noisetemp="75" powerefficiency="0.5" realgain="1" widthlocation="0"></feed>
28	<pre><feed effwidth="7" imaggain="0" lengthlocation="3.625" ncosthetaresponsepower="1" noisetemp="75" powerefficiency="0.5" realgain="1" widthlocation="0"></feed></pre>
29	<feed effwidth="7" imaggain="0" lengthlocation="3.77" ncosthetaresponsepower="1" noisetemp="75" powerefficiency="0.5" realgain="1" widthlocation="0"></feed>
30	<pre><feed effwidth="7" imaggain="0" lengthlocation="3.915" ncosthetaresponsepower="1" noisetemp="75" powerefficiency="0.5" realgain="1" widthlocation="0"></feed></pre>
31	<feed effwidth="7" imaggain="0" lengthlocation="4.06" ncosthetaresponsepower="1" noisetemp="75" powerefficiency="0.5" realgain="1" widthlocation="0"></feed>
32	<pre><feed effwidth="7" imaggain="0" lengthlocation="4.205" ncosthetaresponsepower="1" noisetemp="75" powerefficiency="0.5" realgain="1" widthlocation="0"></feed></pre>
33	<feed effwidth="7" imaggain="0" lengthlocation="4.35" ncosthetaresponsepower="1" noisetemp="75" powerefficiency="0.5" realgain="1" widthlocation="0"></feed>
34	<pre><feed effwidth="7" imaggain="0" lengthlocation="4.495" ncosthetaresponsepower="1" noisetemp="75" powerefficiency="0.5" realgain="1" widthlocation="0"></feed></pre>
35	L

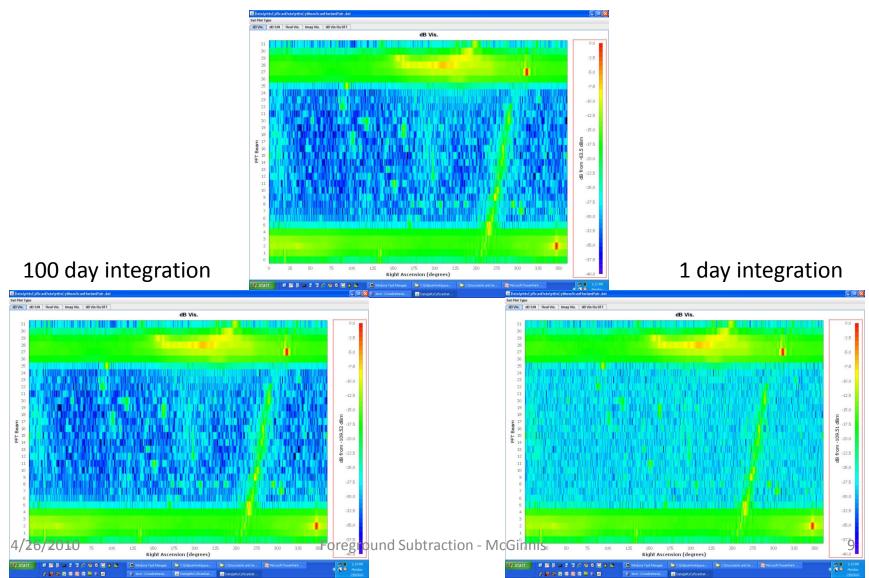
Noiseless Pittsburgh Cylinder Visbility due to a Point Source





8

Pittsburgh Cylinders Visibility 25 MHz Res. BW



Cylinder Modeler

Sky Reconstruction from Cylinder Visibilities

Dave McGinnis February 4, 2010

Visibility

This note will consider the reconstruction of the sky from the measured visibilities from a pair of cylinder antenna arrays. It is assumed that the cylinders fixed and are oriented along the meridian. Each cylinder is populated with N feeds spaced uniformly along the length. The output voltage of each feed provides an input of a spatial Fourier transform along the cylinder length. The spatial Fourier transform forms N beams along the length of the cylinder.

For a pair of cylinders the visibility between cylinders is formed for each beam. As the sky drifts through the cylinder beam, the visibility for beam k is:

$$v_{k}(\varphi) = \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \frac{\tilde{A}_{k}(\theta, \phi)}{\lambda^{2}} T(\theta, \varphi - \phi) \cos(\theta) \, d\theta d\phi$$
(1)

Where ϕ is the time of the day (in units of angle), λ is the wavelength and T is the power flux of the sky. The cylinder pair Fourier area is defined as

$$\tilde{A}_{k}(\theta, \phi) = \tilde{a}_{k,c1}(\theta, \phi) \left(\tilde{a}_{k,c2}(\theta, \phi) \right)^{*}$$
(2)

where the subscripts c1, c2 indicate cylinder 1 and cylinder 2, respectively. The Fourier root area of a cylinder is defined as

$$\tilde{a}_{k,c}(\theta, \phi) = \sum_{n} a_{n}(\theta, \phi) e^{-j\tilde{\beta}(\theta, \phi) \cdot \vec{r}_{n,c}} e^{j2\pi k \frac{n}{N}}$$
(3)

Where n is the feed number, $r_{n,c}$ is the global location of the feed and β is the incoming wave vector:

$$\vec{\beta}(\theta, \phi) = \frac{2\pi}{\lambda} (\sin(\theta)\hat{x} + \cos(\theta)\sin(\phi)\hat{y})$$
 (4)

It is assumed that the length of the cylinders is in the x direction.

Sky Expansion

Since the sky is periodic in right ascension, it can be expanded in a Fourier series:

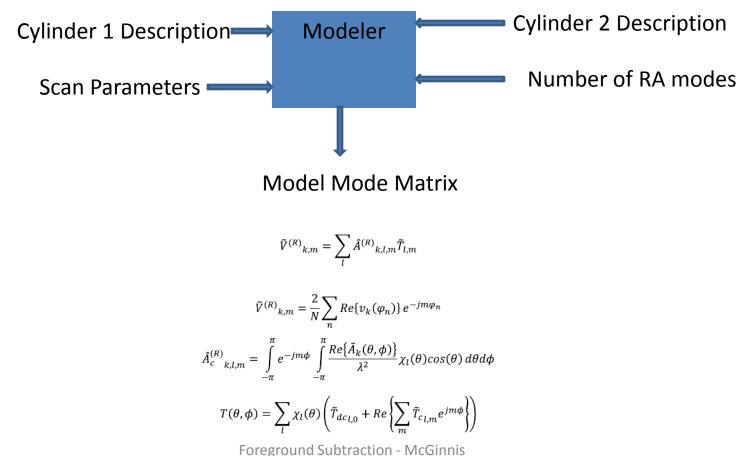
$$T(\theta,\phi) = \sum_{l} \chi_{l}(\theta) \left(\tilde{T}_{dc_{l,0}} + \sum_{m} \tilde{T}_{c_{l,m}} cos(m\phi) + \sum_{m} \tilde{T}_{s_{l,m}} sin(m\phi) \right)$$
(5)

Substituting Equation 5 into Equation 1,

4/26/2010

Foreground Subtraction - McGinnis http://projects-docdb.fnal.gov/cgi-bin/ShowDocument?docid=838

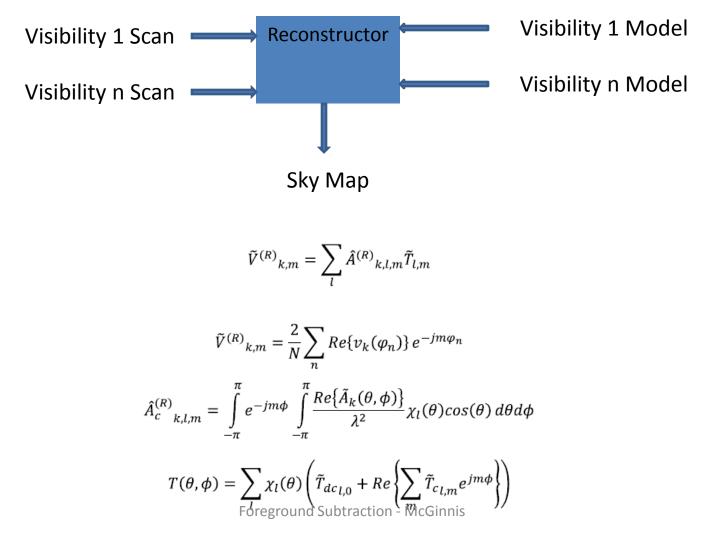
Cylinder Visibility Modeler



4/26/2010

11

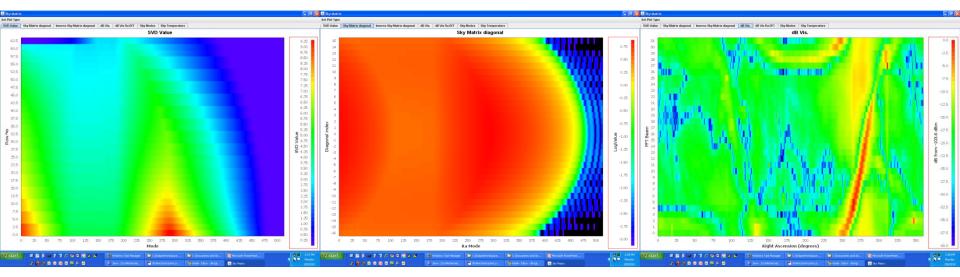
Sky Reconstruction

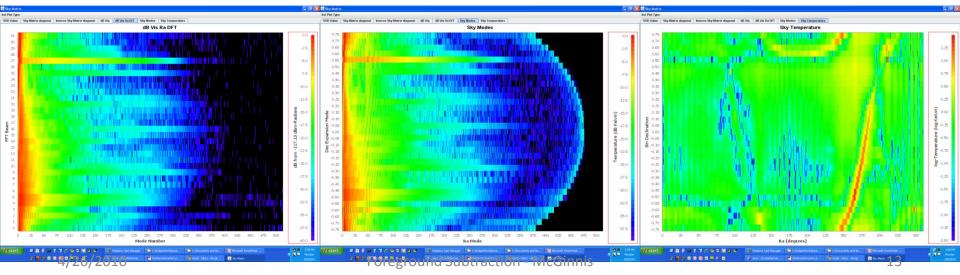


12

4/26/2010

Pair and Auto Pittsburgh Cylinder Haslam Map Reconstruction



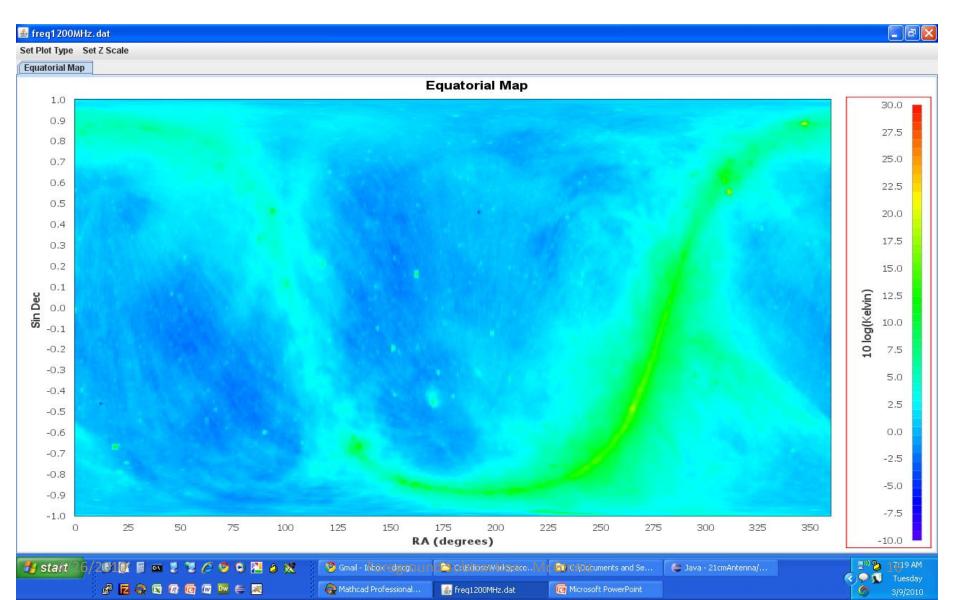


FOREGROUND SUBTRACTION FLUCTUATING SKY PATCH

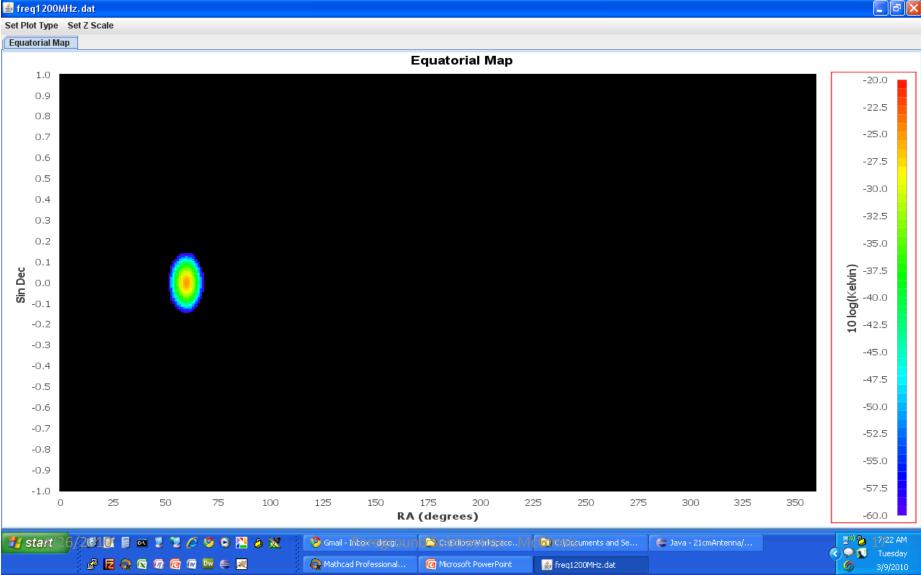
Sky Model Subtraction Algorithm

- Take cylinder visibility data and subtract a <u>simulation</u> of a smooth sky into a cylinder model
- From the sky difference map, fit each visibility spectrum "pixel" as a nth order polynomial in frequency
- Subtract the smoothed pixel trace from the difference map pixel by pixel
- Further FFT filter in frequency each the remaining pixel trace

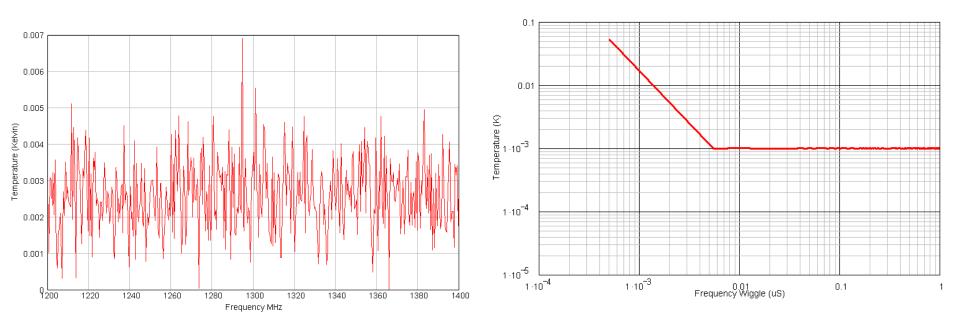
Angelica Sky Map



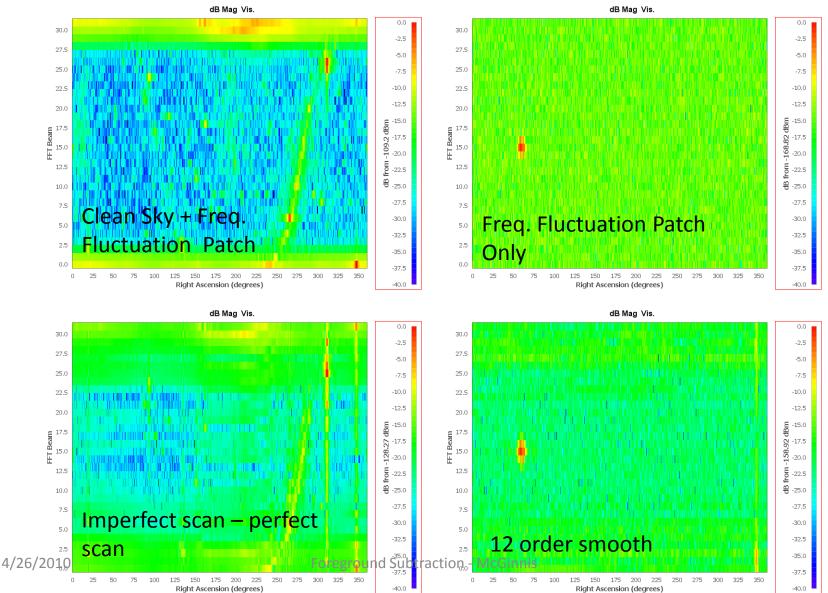
Freq. Fluctuation Patch r.m.s radius = 3 degrees



Freq. Fluctuation Patch Temperature vs Frequency

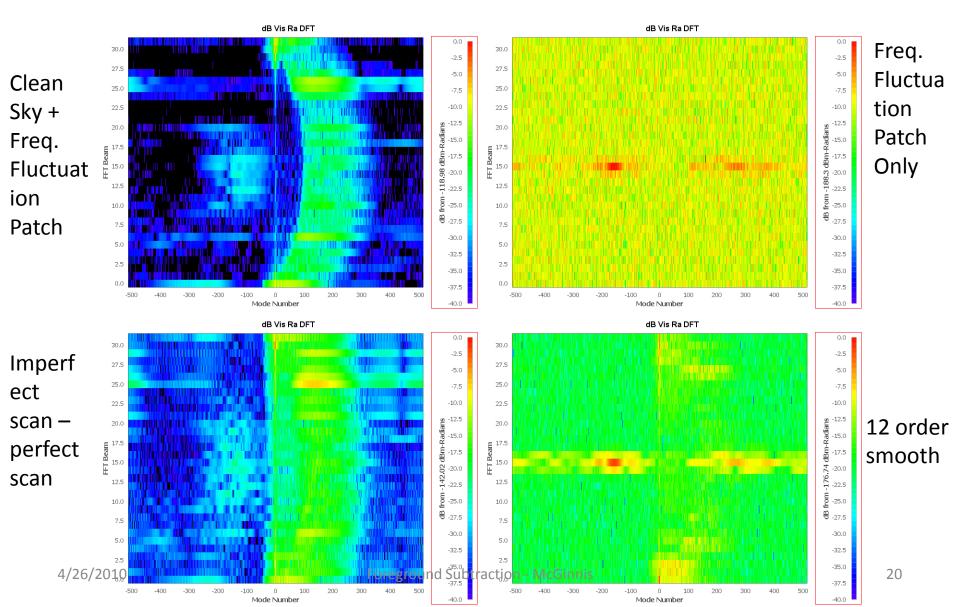


Pittsburgh Cylinder Simulations Sky Scan

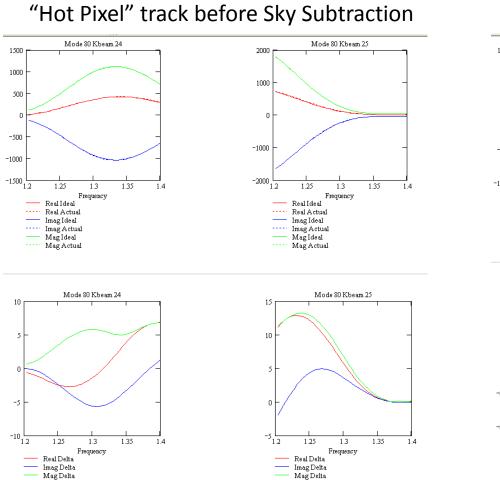


19

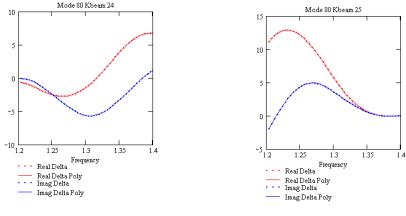
RA DFT of Pittsburgh Cylinder Simulations

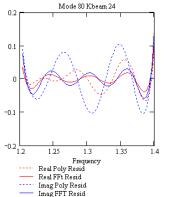


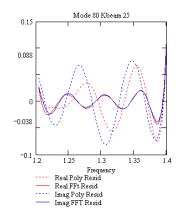
Mode Mixing Smoothness



"Hot Pixel" track after Sky Subtraction



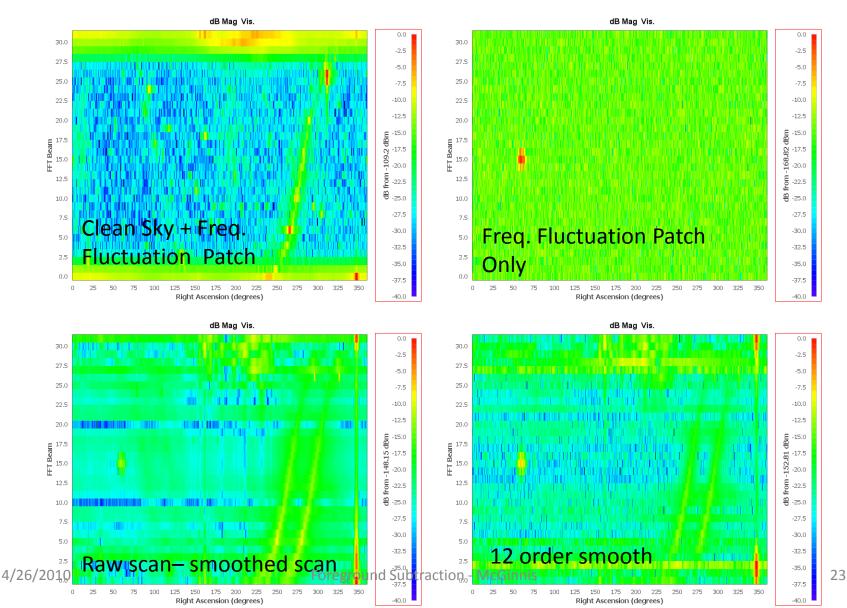




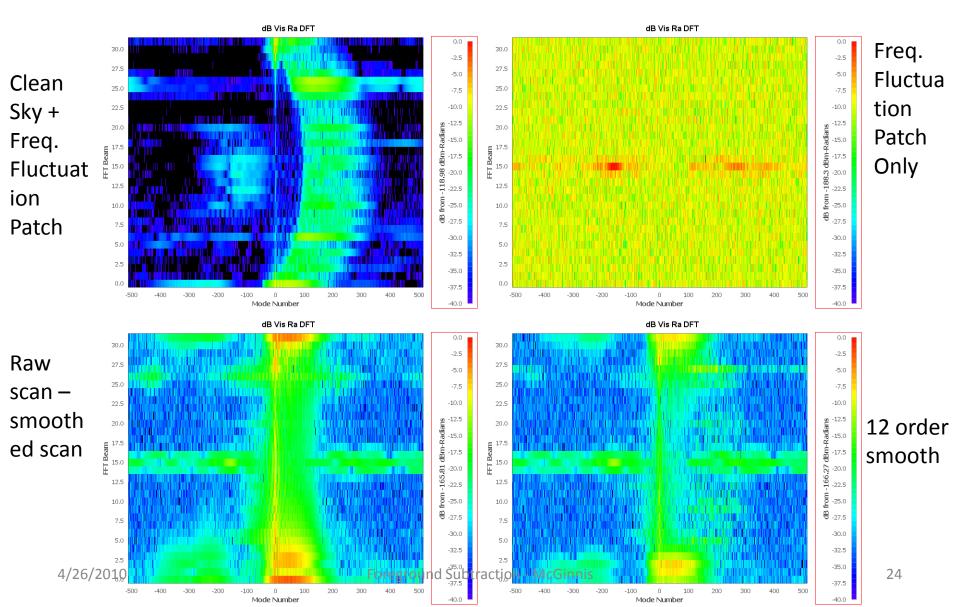
Smoothed Sky Subtraction Algorithm

- Take cylinder visibility data smooth it along the frequency axis using a N order polynomial for each pixel
- Subtract the smoothed map from the raw map producing a difference map
- From the difference map, fit each visibility spectrum "pixel" as a nth order polynomial in frequency
- Subtract the smoothed pixel trace from the difference map pixel by pixel
- Further FFT filter in frequency each the remaining pixel trace

Pittsburgh Cylinder Simulations Sky Scan



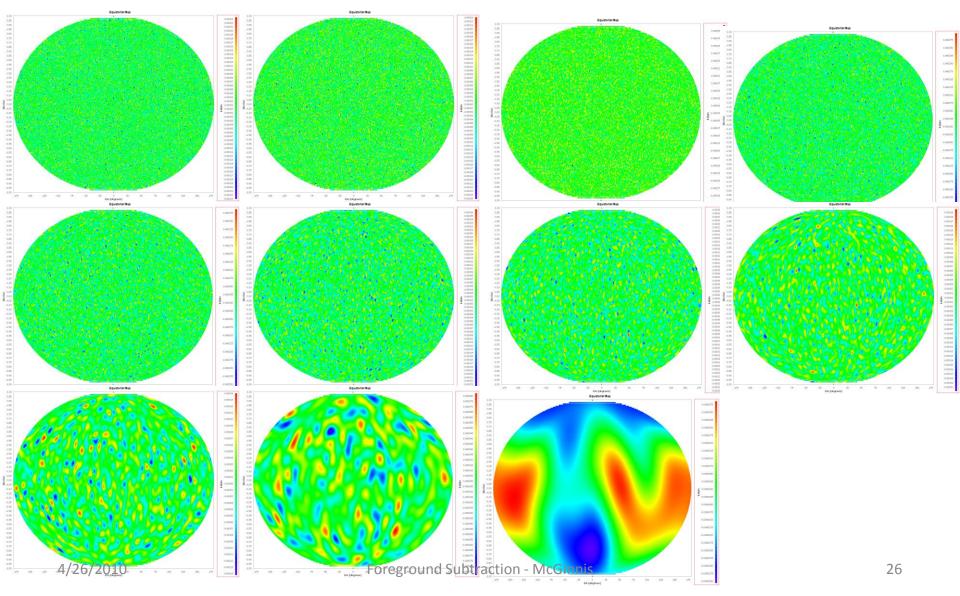
RA DFT of Pittsburgh Cylinder Simulations



Foreground removal using BAO Simulations

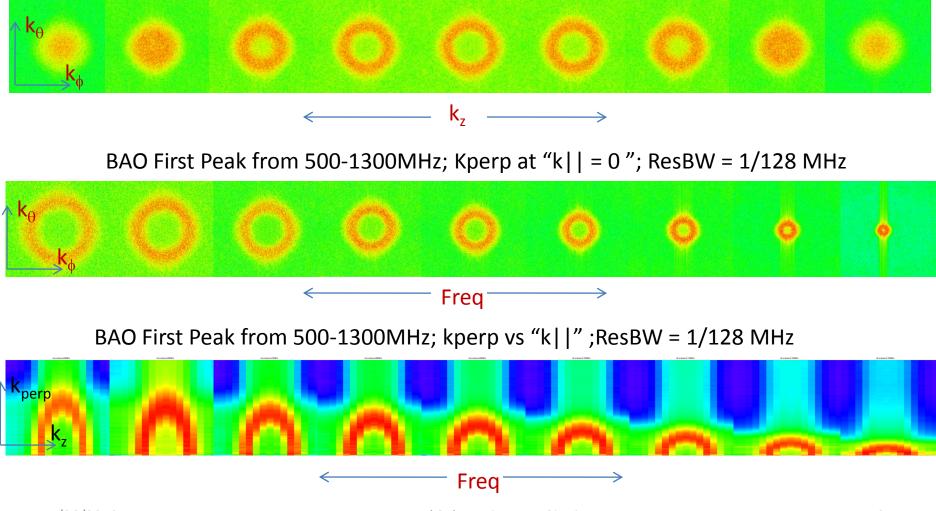
- For simplicity "use high resolution telescope model"
 - Pittsburgh telescope cannot resolve first BAO peak
- Use BAO simulations of the first peak from Nick Gnedin
 - 1000 frequency points from 400-1400MHz
 - Nside=128

BAO Signal First Peak from 400-1400MHz

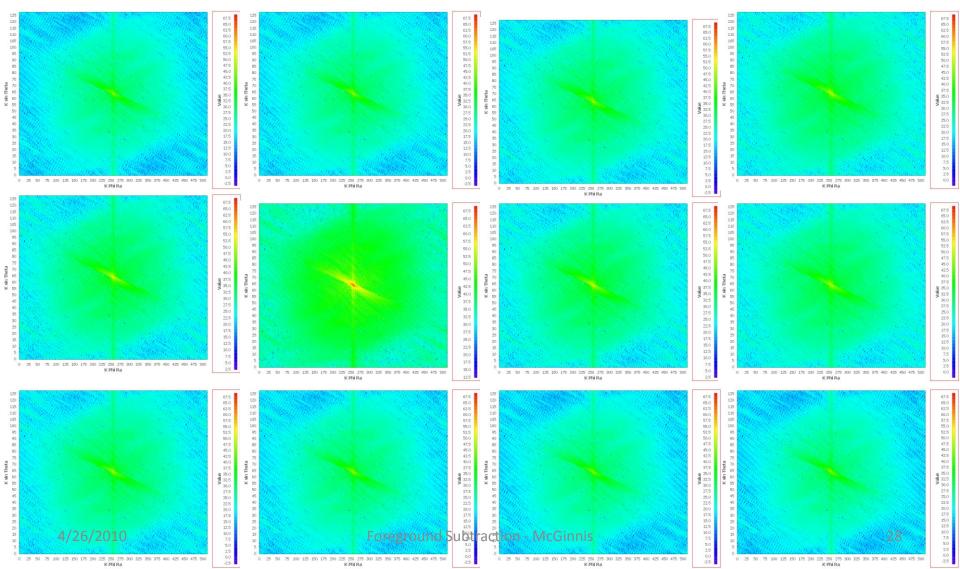


BAO First Peak 3-D K space

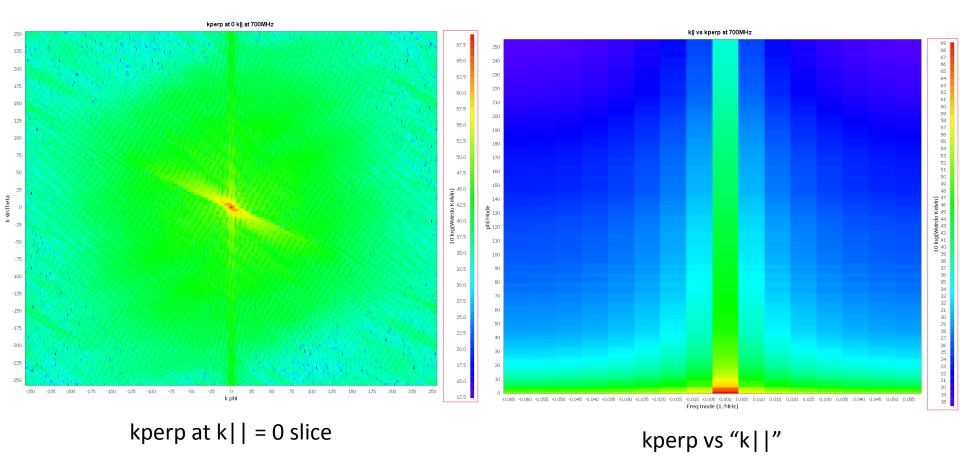
BAO First Peak in 3-D k-Space at 750 MHz – ResBw = 1/128 MHz



BAO + Smooth Sky ResBW = 1/128 MHz



BAO + Smooth Sky at 700 MHz ResBW = 1/128 MHz

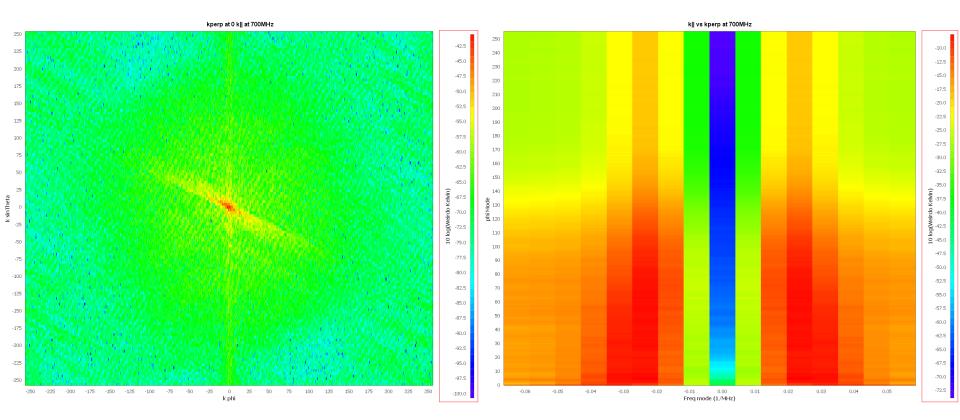


4/26/2010

Smoothed Sky Algorithm in Reconstructed K-space

- Work in reconstructed sky transverse kspace
 - Removes using up polynomial fitting "horsepower" on mode mixing
- Smooth in frequency by fitting an N order polynomial along frequency axis for each transverse k space pixel
- Subtract smoothed kspace from raw kspace
- Fourier transform along frequency axis
- Look the transverse kspace slices at high k|| mode number.

BAO + Smooth Sky at 700 MHz with Foreground Removal ResBW = 1/128 MHz

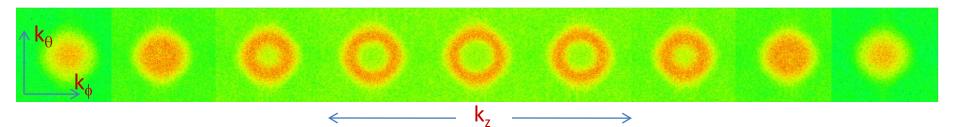


kperp at k|| = 0 slice

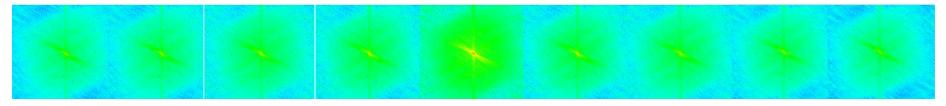
kperp vs "k||"

Foreground Removal (Fermilab)

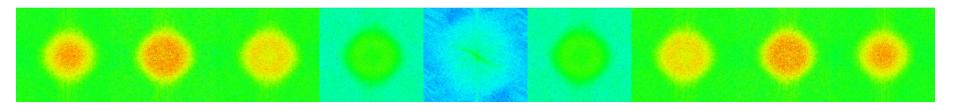
BAO First Peak in 3-D k-Space (Gnedin)



BAO First Peak and Foreground in 3-D k-Space



BAO First Peak and Foreground with Foreground Removal in 3-D k-Space



Summary

- We have developed fairly sophisticated
 - Instrument modeling software
 - Sky Reconstruction software
 - BAO and foreground sky maps
- We have began initial tests of foreground removal algorithms
 - Sky model subtraction algorithm on the raw data cube
 - Smoothed sky subtraction algorithm on the raw data cube
 - Smoothed sky subtraction algorithm in reconstructed k-space
- Initial results look promising
 - Can remove 5 orders of magnitude of foreground on a raw data cube
 - Can see the first BAO peak behind foregrounds in reconstructed kspace (6 orders of magnitude reduction)

Future Work

- Add 2nd and 3rd BAO peaks
- Try "smooth" cuts of large foregrounds
- Try pattern recognition of BAO sphere
- Examine the effects of noise
- Examine the effects of calibration errors